-
-
Notifications
You must be signed in to change notification settings - Fork 343
/
decode.py
executable file
·155 lines (134 loc) · 5.73 KB
/
decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2019 Tomoki Hayashi
# MIT License (https://opensource.org/licenses/MIT)
"""Decode with trained Parallel WaveGAN Generator."""
import argparse
import logging
import os
import time
import numpy as np
import soundfile as sf
import torch
import yaml
from tqdm import tqdm
import parallel_wavegan.models
from parallel_wavegan.datasets import MelDataset
from parallel_wavegan.datasets import MelSCPDataset
from parallel_wavegan.layers import PQMF
from parallel_wavegan.utils import read_hdf5
def main():
"""Run decoding process."""
parser = argparse.ArgumentParser(
description="Decode dumped features with trained Parallel WaveGAN Generator "
"(See detail in parallel_wavegan/bin/decode.py).")
parser.add_argument("--feats-scp", "--scp", default=None, type=str,
help="kaldi-style feats.scp file. "
"you need to specify either feats-scp or dumpdir.")
parser.add_argument("--dumpdir", default=None, type=str,
help="directory including feature files. "
"you need to specify either feats-scp or dumpdir.")
parser.add_argument("--outdir", type=str, required=True,
help="directory to save generated speech.")
parser.add_argument("--checkpoint", type=str, required=True,
help="checkpoint file to be loaded.")
parser.add_argument("--config", default=None, type=str,
help="yaml format configuration file. if not explicitly provided, "
"it will be searched in the checkpoint directory. (default=None)")
parser.add_argument("--verbose", type=int, default=1,
help="logging level. higher is more logging. (default=1)")
args = parser.parse_args()
# set logger
if args.verbose > 1:
logging.basicConfig(
level=logging.DEBUG, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s")
elif args.verbose > 0:
logging.basicConfig(
level=logging.INFO, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s")
else:
logging.basicConfig(
level=logging.WARN, format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s")
logging.warning("Skip DEBUG/INFO messages")
# check directory existence
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
# load config
if args.config is None:
dirname = os.path.dirname(args.checkpoint)
args.config = os.path.join(dirname, "config.yml")
with open(args.config) as f:
config = yaml.load(f, Loader=yaml.Loader)
config.update(vars(args))
# check arguments
if (args.feats_scp is not None and args.dumpdir is not None) or \
(args.feats_scp is None and args.dumpdir is None):
raise ValueError("Please specify either --dumpdir or --feats-scp.")
# get dataset
if args.dumpdir is not None:
if config["format"] == "hdf5":
mel_query = "*.h5"
mel_load_fn = lambda x: read_hdf5(x, "feats") # NOQA
elif config["format"] == "npy":
mel_query = "*-feats.npy"
mel_load_fn = np.load
else:
raise ValueError("support only hdf5 or npy format.")
dataset = MelDataset(
args.dumpdir,
mel_query=mel_query,
mel_load_fn=mel_load_fn,
return_utt_id=True,
)
else:
dataset = MelSCPDataset(
feats_scp=args.feats_scp,
return_utt_id=True,
)
logging.info(f"The number of features to be decoded = {len(dataset)}.")
# setup
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model_class = getattr(
parallel_wavegan.models,
config.get("generator_type", "ParallelWaveGANGenerator"))
model = model_class(**config["generator_params"])
model.load_state_dict(
torch.load(args.checkpoint, map_location="cpu")["model"]["generator"])
logging.info(f"Loaded model parameters from {args.checkpoint}.")
model.remove_weight_norm()
model = model.eval().to(device)
use_noise_input = not isinstance(
model, parallel_wavegan.models.MelGANGenerator)
pad_fn = torch.nn.ReplicationPad1d(
config["generator_params"].get("aux_context_window", 0))
if config["generator_params"]["out_channels"] > 1:
pqmf = PQMF(config["generator_params"]["out_channels"]).to(device)
# start generation
total_rtf = 0.0
with torch.no_grad(), tqdm(dataset, desc="[decode]") as pbar:
for idx, (utt_id, c) in enumerate(pbar, 1):
# setup input
x = ()
if use_noise_input:
z = torch.randn(1, 1, len(c) * config["hop_size"]).to(device)
x += (z,)
c = pad_fn(torch.tensor(c, dtype=torch.float).unsqueeze(0).transpose(2, 1)).to(device)
x += (c,)
# generate
start = time.time()
if config["generator_params"]["out_channels"] == 1:
y = model(*x).view(-1).cpu().numpy()
else:
y = pqmf.synthesis(model(*x)).view(-1).cpu().numpy()
rtf = (time.time() - start) / (len(y) / config["sampling_rate"])
pbar.set_postfix({"RTF": rtf})
total_rtf += rtf
# save as PCM 16 bit wav file
sf.write(os.path.join(config["outdir"], f"{utt_id}_gen.wav"),
y, config["sampling_rate"], "PCM_16")
# report average RTF
logging.info(f"Finished generation of {idx} utterances (RTF = {total_rtf / idx:.03f}).")
if __name__ == "__main__":
main()