-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgda.py
301 lines (291 loc) · 12.9 KB
/
gda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
__all__ = ["main"]
import pprint
import logging
import pathlib
import itertools
import yaap
import inflect
import torch
import torchmodels
import utils
import models
import generate
import datasets
from tools import reduce_json
import dst.internal.run as dst_run
import dst.internal.models as dst_models
import dst.internal.models.dst as dst_pkg
import dst.internal.datasets as dst_datasets
from datasets import Dialog
def create_parser():
parser = yaap.Yaap("Conduct generative data augmentation experiments.")
# data options
parser.add_pth("data-dir", is_dir=True, must_exist=True,
default=(pathlib.Path(__file__).absolute().parent
.joinpath("tests/data/json")),
help="Path to a json-format dialogue dataset.")
parser.add_pth("processor-path", must_exist=True, required=True,
help="Path to the processor pickle file.")
# model options
parser.add_pth("gen-model-path", must_exist=True,
default=(pathlib.Path(__file__).absolute().parent
.joinpath("configs/vhda-mini.yml")),
help="Path to the generative model configuration file.")
parser.add_pth("dst-model-path", must_exist=True,
default=(pathlib.Path(__file__).absolute().parent
.joinpath("dst/internal/configs/gce.yml")),
help="Path to the dst model configuration file.")
parser.add_pth("ckpt-path", must_exist=True, required=True,
help="Path to the model checkpoint.")
# model-specific options (TDA)
parser.add_flt("conv-scale", default=1.0,
help="Scale to introduce into conv vector "
"for TDA generation.")
parser.add_flt("spkr-scale", default=1.0,
help="Scale to introduce into spkr vector "
"for TDA generation.")
parser.add_flt("goal-scale", default=1.0,
help="Scale to introduce into goal vector "
"for TDA generation.")
parser.add_flt("state-scale", default=1.0,
help="Scale to introduce into state vector "
"for TDA generation.")
parser.add_flt("sent-scale", default=1.0,
help="Scale to introduce into sent vector "
"for TDA generation.")
# model-specific options (general)
parser.add_int("beam-size", default=4,
help="Beam search beam size.")
parser.add_int("max-sent-len", default=30,
help="Beam search maximum sentence length.")
# generation options
parser.add_int("gen-runs", default=3,
help="Number of generations to run.")
parser.add_int("gen-batch-size", default=32,
help="Mini-batch size.")
parser.add_flt("multiplier", default=1.0,
help="Ratio of dialog instances to generate. ")
parser.add_bol("validate-unique",
help="Whether to validate by checking uniqueness.")
# DST options
parser.add_int("dst-batch-size", default=32,
help="Mini-batch size.")
parser.add_int("dst-runs", default=5,
help="Number of DST models to train and evaluate using "
"different seeds.")
parser.add_int("epochs", default=200,
help="Number of epochs to train DST. "
"The actual number of epochs will be scaled by "
"the multiplier.")
parser.add_flt("l2norm",
help="DST Weight of l2norm regularization.")
parser.add_flt("gradient-clip",
help="DST Clipping bounds for gradients.")
parser.add_bol("test-asr",
help="Whether to use asr information during testing.")
# misc options
parser.add_pth("logging-config", must_exist=True,
default=(pathlib.Path(__file__).absolute().parent
.joinpath("configs/logging.yml")),
help="Path to a logging config file (yaml/json).")
parser.add_pth("save-dir", default=pathlib.Path("out"),
help="Directory to save output generation files.")
parser.add_int("gpu", min_bound=0,
help="GPU device to use. (e.g. 0, 1, etc.)")
parser.add_bol("overwrite", help="Whether to overwrite save dir.")
parser.add_int("seed", help="Random seed.")
return parser
def main(args=None):
args = utils.parse_args(create_parser(), args)
if args.logging_config is not None:
logging.config.dictConfig(utils.load_yaml(args.logging_config))
save_dir = pathlib.Path(args.save_dir)
if (not args.overwrite and
save_dir.exists() and utils.has_element(save_dir.glob("*"))):
raise FileExistsError(f"save directory ({save_dir}) is not empty")
shell = utils.ShellUtils()
engine = inflect.engine()
shell.mkdir(save_dir, silent=True)
logger = logging.getLogger("gda")
utils.seed(args.seed)
logger.info("loading data...")
load_fn = utils.chain_func(
lambda data: list(map(Dialog.from_json, data)),
utils.load_json
)
processor = utils.load_pickle(args.processor_path)
data_dir = pathlib.Path(args.data_dir)
train_data = load_fn(str(data_dir.joinpath("train.json")))
valid_data = load_fn(str(data_dir.joinpath("dev.json")))
test_data = load_fn(str(data_dir.joinpath("test.json")))
data = {"train": train_data, "dev": valid_data, "test": test_data}
logger.info("preparing model...")
torchmodels.register_packages(models)
model_cls = torchmodels.create_model_cls(models, args.gen_model_path)
model: models.AbstractTDA = model_cls(processor.vocabs)
model.reset_parameters()
ckpt = torch.load(args.ckpt_path)
model.load_state_dict(ckpt)
device = torch.device("cpu")
if args.gpu is not None:
device = torch.device(f"cuda:{args.gpu}")
model = model.to(device)
logger.info(f"will run {args.gen_runs} generation trials...")
gen_summary = []
dst_summary = []
for gen_idx in range(1, args.gen_runs + 1):
logger.info(f"running {engine.ordinal(gen_idx)} generation trial...")
gen_dir = save_dir.joinpath(f"gen-{gen_idx:03d}")
shell.mkdir(gen_dir, silent=True)
gen_args = generate.GenerateArguments(
model=model,
processor=processor,
data=tuple(train_data),
instances=int(round(len(train_data) * args.multiplier)),
batch_size=args.gen_batch_size,
conv_scale=args.conv_scale,
spkr_scale=args.spkr_scale,
goal_scale=args.goal_scale,
state_scale=args.state_scale,
sent_scale=args.sent_scale,
validate_dst=True,
validate_unique=args.validate_unique,
device=device
)
utils.save_json(gen_args.to_json(), gen_dir.joinpath("args.json"))
with torch.no_grad():
samples = generate.generate(gen_args)
utils.save_json([sample.output.to_json() for sample in samples],
gen_dir.joinpath("out.json"))
utils.save_json([sample.input.to_json() for sample in samples],
gen_dir.joinpath("in.json"))
utils.save_lines([str(sample.log_prob) for sample in samples],
gen_dir.joinpath("logprob.txt"))
da_data = [sample.output for sample in samples]
gen_data = {
"train": data["train"] + da_data,
"dev": data["dev"],
"test": data["test"]
}
# convert dialogs to dst dialogs
gen_data = {split: list(map(datasets.DSTDialog.from_dialog, dialogs))
for split, dialogs in gen_data.items()}
for split, dialogs in gen_data.items():
logger.info(f"verifying '{split}' dataset...")
for dialog in dialogs:
dialog.compute_user_goals()
dialog.validate()
logger.info("preparing dst environment...")
dst_processor = dst_datasets.DSTDialogProcessor(
sent_processor=datasets.SentProcessor(
bos=True,
eos=True,
lowercase=True,
max_len=30
)
)
dst_processor.prepare_vocabs(list(itertools.chain(*gen_data.values())))
train_dataset = dst_datasets.DSTDialogDataset(
dialogs=gen_data["train"],
processor=dst_processor
)
train_dataloader = dst_datasets.create_dataloader(
train_dataset,
batch_size=args.dst_batch_size,
shuffle=True,
pin_memory=True
)
dev_dataloader = dst_run.TestDataloader(
dialogs=gen_data["dev"],
processor=dst_processor,
max_batch_size=args.dst_batch_size
)
test_dataloader = dst_run.TestDataloader(
dialogs=gen_data["test"],
processor=dst_processor,
max_batch_size=args.dst_batch_size
)
logger.info("saving dst processor object...")
utils.save_pickle(dst_processor, gen_dir.joinpath("processor.pkl"))
torchmodels.register_packages(dst_models)
dst_model_cls = torchmodels.create_model_cls(dst_pkg,
args.dst_model_path)
dst_model = dst_model_cls(dst_processor.vocabs)
dst_model = dst_model.to(device)
logger.info(str(model))
logger.info(f"number of parameters DST: "
f"{utils.count_parameters(dst_model):,d}")
logger.info(f"will run {args.dst_runs} trials...")
all_results = []
for idx in range(1, args.dst_runs + 1):
logger.info(f"running {engine.ordinal(idx)} dst trial...")
trial_dir = gen_dir.joinpath(f"dst-{idx:03d}")
logger.info("resetting parameters...")
dst_model.reset_parameters()
logger.info("preparing trainer...")
runner = dst_run.Runner(
model=dst_model,
processor=dst_processor,
device=device,
save_dir=trial_dir,
epochs=int(round(args.epochs / (1 + args.multiplier))),
loss="sum",
l2norm=args.l2norm,
gradient_clip=args.gradient_clip,
train_validate=False,
early_stop=True,
early_stop_criterion="joint-goal",
early_stop_patience=None,
asr_method="scaled",
asr_sigmoid_sum_order="sigmoid-sum",
asr_topk=5
)
logger.info("commencing training...")
record = runner.train(
train_dataloader=train_dataloader,
dev_dataloader=dev_dataloader,
test_fn=None
)
logger.info("final summary: ")
logger.info(pprint.pformat(record.to_json()))
utils.save_json(record.to_json(),
trial_dir.joinpath("summary.json"))
if not args.test_asr:
logger.info("commencing testing...")
with torch.no_grad():
eval_results = runner.test(test_dataloader)
logger.info("test results: ")
logger.info(pprint.pformat(eval_results))
else:
logger.info("commencing testing (asr)...")
with torch.no_grad():
eval_results = runner.test_asr(test_dataloader)
logger.info("test(asr) results: ")
logger.info(pprint.pformat(eval_results))
eval_results["epoch"] = int(record.epoch)
eval_results["criterion"] = record.value
logger.info("test evaluation: ")
logger.info(pprint.pformat(eval_results))
utils.save_json(eval_results, trial_dir.joinpath("eval.json"))
all_results.append(eval_results)
dst_summary.append(eval_results)
logger.info("aggregating results...")
summary = reduce_json(all_results)
logger.info("aggregated results: ")
agg_results = {k: v["stats"]["mean"] for k, v in summary.items()}
gen_summary.append(agg_results)
logger.info(pprint.pformat(agg_results))
utils.save_json(summary, gen_dir.joinpath("summary.json"))
gen_summary = reduce_json(gen_summary)
dst_summary = reduce_json(dst_summary)
logger.info(f"aggregating generation trials ({args.gen_runs})...")
logger.info(pprint.pformat({k: v["stats"]["mean"]
for k, v in gen_summary.items()}))
logger.info(f"aggregating dst trials ({args.gen_runs * args.dst_runs})...")
logger.info(pprint.pformat({k: v["stats"]["mean"]
for k, v in dst_summary.items()}))
utils.save_json(gen_summary, save_dir.joinpath("gen-summary.json"))
utils.save_json(dst_summary, save_dir.joinpath("dst-summary.json"))
logger.info("done!")
if __name__ == "__main__":
main()