-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
220 lines (200 loc) · 7.91 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
__all__ = ["generate", "GenerateArguments"]
import pathlib
import logging
import logging.config
from dataclasses import dataclass
from typing import Sequence, Optional
import yaap
import torch
import torchmodels
import utils
import models
import datasets
from loopers import Sample
from loopers import Generator
from loopers import LogGenerator
from loopers import TDAGenerator
from loopers import BeamSearchGenerator
from loopers import ValidatingGenerator
from datasets import Dialog
@dataclass
class BaseGenerator(LogGenerator, BeamSearchGenerator,
ValidatingGenerator, Generator):
pass
@dataclass
class GenerateArguments(utils.Arguments):
model: models.AbstractTDA
processor: datasets.DialogProcessor
data: Optional[Sequence[Dialog]] = None
instances: Optional[int] = None
batch_size: int = 32
conv_scale: float = 1.0
spkr_scale: float = 1.0
goal_scale: float = 1.0
state_scale: float = 1.0
sent_scale: float = 1.0
max_conv_len: int = 30
max_sent_len: int = 30
beam_size: int = 4
validate_dst: bool = False
validate_unique: bool = False
device: torch.device = torch.device("cpu")
def generate(args: GenerateArguments) -> Sequence[Sample]:
logger = logging.getLogger("generate")
logger.info("preparing generation environment...")
generator_cls = BaseGenerator
generator_kwargs = dict(
model=args.model,
processor=args.processor,
device=args.device,
beam_size=args.beam_size,
max_sent_len=args.max_sent_len,
run_end_report=False
)
if isinstance(args.model, models.AbstractTDA):
@dataclass
class _TDAGenerator(TDAGenerator, generator_cls):
pass
generator_cls = _TDAGenerator
generator_kwargs.update(dict(
conv_scale=args.conv_scale,
spkr_scale=args.spkr_scale,
goal_scale=args.goal_scale,
state_scale=args.state_scale,
sent_scale=args.sent_scale,
max_conv_len=args.max_conv_len
))
def is_valid(sample):
def is_valid_dst():
try:
datasets.DSTDialog.from_dialog(sample.output, force=False)
return True
except RuntimeError as e:
return False
def is_unique():
return sample.input != sample.output
return ((not args.validate_dst or is_valid_dst()) and
(not args.validate_unique or is_unique()))
generator_kwargs.update(dict(
validator=is_valid
))
generator = generator_cls(**generator_kwargs)
logger.info("generating...")
with torch.no_grad():
samples, _ = generator(args.data, args.instances)
return samples
def create_parser():
parser = yaap.Yaap()
# data options
parser.add_pth("data-path", must_exist=True,
help="Path to the data. If not given, then the data "
"will be generated from the model's prior.")
parser.add_pth("processor-path", must_exist=True, required=True,
help="Path to the processor pickle file.")
# model options
parser.add_pth("model-path", must_exist=True,
default=(pathlib.Path(__file__).absolute().parent
.joinpath("configs/vhda-mini.yml")),
help="Path to the model configuration file.")
parser.add_pth("ckpt-path", must_exist=True, required=True,
help="Path to the model checkpoint.")
# model-specific options (TDA)
parser.add_flt("conv-scale", default=1.0,
help="Scale to introduce into conv vector "
"for TDA generation.")
parser.add_flt("spkr-scale", default=1.0,
help="Scale to introduce into spkr vector "
"for TDA generation.")
parser.add_flt("goal-scale", default=1.0,
help="Scale to introduce into goal vector "
"for TDA generation.")
parser.add_flt("state-scale", default=1.0,
help="Scale to introduce into state vector "
"for TDA generation.")
parser.add_flt("sent-scale", default=1.0,
help="Scale to introduce into sent vector "
"for TDA generation.")
# model-specific options (general)
parser.add_int("beam-size", default=4,
help="Beam search beam size.")
parser.add_int("max-sent-len", default=30,
help="Beam search maximum sentence length.")
# generation options
parser.add_int("batch-size", default=32,
help="Mini-batch size.")
parser.add_bol("validate-dst",
help="Whether to validate generated samples "
"to be a valid dst dialogs.")
parser.add_bol("validate-unique",
help="Whether to validate by checking uniqueness.")
parser.add_int("instances",
help="Number of dialog instances to generate. "
"If not given, the same number of instances "
"as the data will be generated.")
# misc options
parser.add_pth("logging-config", must_exist=True,
default=(pathlib.Path(__file__).absolute().parent
.joinpath("configs/logging.yml")),
help="Path to a logging config file (yaml/json).")
parser.add_pth("save-dir", default=pathlib.Path("out"),
help="Directory to save output generation files.")
parser.add_int("gpu", min_bound=0,
help="GPU device to use. (e.g. 0, 1, etc.)")
parser.add_bol("overwrite", help="Whether to overwrite save dir.")
parser.add_int("seed", help="Random seed.")
return parser
def main():
args = utils.parse_args(create_parser())
if args.logging_config is not None:
logging.config.dictConfig(utils.load_yaml(args.logging_config))
save_dir = pathlib.Path(args.save_dir)
if (not args.overwrite and
save_dir.exists() and utils.has_element(save_dir.glob("*.json"))):
raise FileExistsError(f"save directory ({save_dir}) is not empty")
shell = utils.ShellUtils()
shell.mkdir(save_dir, silent=True)
logger = logging.getLogger("generate")
utils.seed(args.seed)
logger.info("loading data...")
processor = utils.load_pickle(args.processor_path)
data = None
if args.data_path is not None:
data = list(map(Dialog.from_json, utils.load_json(args.data_path)))
logger.info("preparing model...")
torchmodels.register_packages(models)
model_cls = torchmodels.create_model_cls(models, args.model_path)
model: models.AbstractTDA = model_cls(processor.vocabs)
model.reset_parameters()
ckpt = torch.load(args.ckpt_path)
model.load_state_dict(ckpt)
device = torch.device("cpu")
if args.gpu is not None:
device = torch.device(f"cuda:{args.gpu}")
model = model.to(device)
gen_args = GenerateArguments(
model=model,
processor=processor,
data=data,
instances=args.instances,
batch_size=args.batch_size,
conv_scale=args.conv_scale,
spkr_scale=args.spkr_scale,
goal_scale=args.goal_scale,
state_scale=args.state_scale,
sent_scale=args.sent_scale,
validate_dst=args.validate_dst,
validate_unique=args.validate_unique,
device=device
)
utils.save_json(gen_args.to_json(), save_dir.joinpath("args.json"))
with torch.no_grad():
samples = generate(gen_args)
utils.save_json([sample.output.to_json() for sample in samples],
save_dir.joinpath("gen-out.json"))
utils.save_json([sample.input.to_json() for sample in samples],
save_dir.joinpath("gen-in.json"))
utils.save_lines([str(sample.log_prob) for sample in samples],
save_dir.joinpath("logprob.txt"))
logger.info("done!")
if __name__ == "__main__":
main()