-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimize.py
303 lines (276 loc) · 10.8 KB
/
optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
__all__ = ["optimize"]
import datetime
import tempfile
import pathlib
import warnings
import itertools
import functools
from dataclasses import dataclass
from typing import Callable
import yaap
import optuna
import utils
def find_replace_kvp(d: dict, key: str, value):
if key in d:
d[key] = value
return
for k, v in d.items():
if isinstance(v, dict):
find_replace_kvp(v, key, value)
def update_dict(d: dict, key: str, value):
tokens = key.split(".")
if tokens[0] not in d:
raise KeyError(f"not a valid key: {tokens[0]}")
if len(tokens) == 1:
d[tokens[0]] = value
return
update_dict(d[tokens[0]], ".".join(tokens[1:]), value)
def update_model(model: dict, key: str, value):
update_dict(
d=model,
key=".".join(itertools.chain(*zip(itertools.repeat("vargs"),
key.split(".")))),
value=value
)
@dataclass
class Optimizer:
trial: optuna.Trial
def suggest_dim(self, name: str, low: int, high: int):
bounds = (low, high)
pow_map = {2 ** i: i for i in range(1, 11)}
if not all(b in pow_map for b in bounds):
raise ValueError(f"dimension bounds must be power of 2: {bounds}")
return 2 ** self.trial.suggest_int(
name=name,
low=pow_map[bounds[0]], high=pow_map[bounds[1]]
)
def suggest_multilayer(self, name: str) -> dict:
return dict(
type="multilayer",
vargs=dict(
activation=self.trial.suggest_categorical(
name=f"multilayer-act",
choices=("relu", "tanh")
),
batch_norm=self.trial.suggest_categorical(
name=f"multilayer-bn",
choices=(False, True)
),
dropout=self.trial.suggest_discrete_uniform(
name=f"multilayer-dropout",
low=0.0, high=0.40, q=0.1
),
hidden_dim=2 ** self.trial.suggest_int(
name=f"multilayer-dim-pow",
low=8, high=9
),
num_layers=self.trial.suggest_int(
name=f"multilayer-num-layers",
low=1, high=2
)
)
)
def optimize_rnn(self, model, key: str):
optuna_key = '-'.join(key.split('.'))
update_model(
model=model,
key=f"{key}.dropout",
value=self.trial.suggest_discrete_uniform(
name=f"{optuna_key}-dropout",
low=0.0, high=0.40, q=0.1
)
)
try:
update_model(model, f"{key}.num_layers", self.trial.suggest_int(
name=f"{optuna_key}-num-layers",
low=1, high=2
))
except KeyError:
update_model(model, f"{key}.layers", self.trial.suggest_int(
name=f"{optuna_key}-num-layers",
low=1, high=2
))
def optimize_posterior_dropout(self, model: dict):
dropout_gamma = self.trial.suggest_discrete_uniform(
name="posterior-dropout-gamma",
low=0.9, high=1.3, q=0.05)
base_dropout = self.trial.suggest_discrete_uniform(
name="posterior-dropout-base",
low=0.01, high=0.1, q=0.01
)
speaker_dropout = base_dropout
goal_dropout = speaker_dropout * dropout_gamma
turn_dropout = goal_dropout * dropout_gamma
sent_dropout = turn_dropout * dropout_gamma
word_dropout = sent_dropout * dropout_gamma
update_model(model, "speaker_dropout", speaker_dropout)
update_model(model, "goal_dropout", goal_dropout)
update_model(model, "turn_dropout", turn_dropout)
update_model(model, "sent_dropout", sent_dropout)
update_model(model, "sent_decoder.word_dropout", word_dropout)
def optimize_dim(self, model, key, low, high):
update_model(
model=model,
key=f"{key}-pow",
value=self.suggest_dim(
name="-".join(key.split(".")),
low=low,
high=high
)
)
def optimize_multilayer(self, model, key):
update_model(
model=model,
key=key,
value=self.suggest_multilayer("-".join(key.split(".")))
)
def optimize_model(self, model: dict):
self.optimize_posterior_dropout(model)
self.optimize_dim(model, "zconv_dim", 4, 32)
self.optimize_dim(model, "zgoal_dim", 8, 64)
self.optimize_dim(model, "zturn_dim", 8, 64)
self.optimize_dim(model, "zutt_dim", 64, 256)
self.optimize_dim(model, "conv_dim", 128, 512)
self.optimize_dim(model, "goal_dim", 64, 256)
self.optimize_dim(model, "turn_dim", 64, 256)
self.optimize_dim(model, "sent_dim", 128, 512)
self.optimize_dim(model, "sent_encoder.hidden_dim", 256, 1024)
self.optimize_rnn(model, "sent_encoder.rnn")
self.optimize_rnn(model, "conv_encoder")
self.optimize_rnn(model, "conv_post_encoder")
self.optimize_rnn(model, "sent_decoder.decoding_rnn")
for key in (
("sent_encoder", "output_layer"),
("sent_decoder", "output_layer"),
("sent_decoder", "decoding_rnn", "init_layer"),
("state_encoder", "label_layer"),
("state_encoder", "output_layer"),
("state_decoder", "input_layer"),
("state_decoder", "output_layer"),
("speaker_encoder",),
("speaker_decoder",)
):
self.optimize_multilayer(model, ".".join(key))
return model
def optimize_config(self, config: dict):
gen_epoch = int(self.trial.suggest_discrete_uniform(
name="gen-epoch",
low=500, high=1000, q=100
))
dropout_annealing_target = self.trial.suggest_discrete_uniform(
name="dropout-annealing-target",
low=0.0, high=0.2, q=0.02
)
dropout_annealing_period = int(self.trial.suggest_discrete_uniform(
name="dropout-annealing-period",
low=250000, high=400000, q=50000
))
dropout_annealing = \
[(0, 1.0), (dropout_annealing_period, dropout_annealing_target)]
kld_annealing_period = int(self.trial.suggest_discrete_uniform(
name="kld-annealing-period",
low=150000, high=250000, q=100000
))
base_gen_scale = self.trial.suggest_discrete_uniform(
name="base-gen-scale",
low=0.2, high=2.0, q=0.2
)
gen_scale_gamma = self.trial.suggest_discrete_uniform(
name="gen-scale-gamma",
low=0.7, high=1.3, q=0.05
)
vhda_conv_scale = base_gen_scale
vhda_speaker_scale = 0.0
vhda_goal_scale = vhda_conv_scale * gen_scale_gamma
vhda_turn_scale = vhda_goal_scale * gen_scale_gamma
vhda_sent_scale = vhda_turn_scale * gen_scale_gamma
config["batch-size"] = 32
config["num-vhda-epochs"] = gen_epoch
config["save-every"] = gen_epoch
config["dropout-schedule"] = str(dropout_annealing)
config["kld-annealing-rate"] = kld_annealing_period
config["vhda-conv-scale"] = vhda_conv_scale
config["vhda-speaker-scale"] = vhda_speaker_scale
config["vhda-goal-scale"] = vhda_goal_scale
config["vhda-turn-scale"] = vhda_turn_scale
config["vhda-sent-scale"] = vhda_sent_scale
return config
def optimize(trial: optuna.Trial, model_path, config_path):
optimizer = Optimizer(trial)
run_config = utils.load_yaml(config_path)
mdl_config = utils.load_yaml(model_path)
run_config = optimizer.optimize_config(run_config)
mdl_config = optimizer.optimize_model(mdl_config)
shell = utils.ShellUtils()
shell.mkdir("optimize-debug", silent=True)
utils.save_yaml(mdl_config, "optimize-debug/model.yml")
utils.save_json(run_config, "optimize-debug/run.json")
run_path, mdl_path = tempfile.mktemp(), tempfile.mktemp()
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
save_dir = (pathlib.Path(__file__).absolute()
.parent.joinpath(f"out/woz/{timestamp}"))
run_config["save-dir"] = str(save_dir)
run_config["model-path"] = mdl_path
utils.save_json(run_config, run_path)
utils.save_json(mdl_config, mdl_path)
retcode, stdout, stderr = utils.Process(
args=f"python run.py @load {run_path}".split(),
cwd=pathlib.Path(__file__).absolute().parent,
print_stdout=True,
print_stderr=True
).run()
if retcode:
raise RuntimeError(f"process 'run.py' failed; "
f"return code: {retcode}; stderr: {stderr}")
shell.remove(run_path, silent=True)
shell.remove(mdl_path, silent=True)
gen_dirs = list(save_dir.glob("gen-*"))
if not gen_dirs:
raise RuntimeError(f"no generation directory detected")
if len(gen_dirs) > 1:
warnings.warn(f"more than 1 generation "
f"directories detected: {gen_dirs}")
gen_dir = gen_dirs[-1]
ttest_results = utils.load_json(gen_dir.joinpath("ttest-results.json"))
return -ttest_results["hmean"]["t"]
def create_parser():
parser = yaap.Yaap()
parser.add_pth("model-path", must_exist=True,
default=(pathlib.Path(__file__).absolute().parent
.joinpath("examples/model-vhda.yml")),
help="Path to a base model path.")
parser.add_pth("run-path", must_exist=True, required=True,
help="Path to a base run configuration path.")
parser.add_str("storage", format="url",
default="sqlite:///examples/study.db",
help="Optuna database url supported by sqlalchemy.")
parser.add_str("study-name", default="default",
help="Optuna study name.")
parser.add_int("num-trials",
help="Number of trials.")
parser.add_int("num-jobs", default=1,
help="Number of concurrent jobs.")
parser.add_flt("timeout",
help="Timeout for a single trial in seconds.")
return parser
def main():
parser = create_parser()
args = utils.parse_args(parser)
study = optuna.create_study(
storage=args.storage,
study_name=args.study_name,
load_if_exists=True
)
optimize_fn: Callable[[optuna.Trial], float] = functools.partial(
optimize,
model_path=args.model_path,
config_path=args.run_path
)
study.optimize(
func=optimize_fn,
n_trials=args.num_trials,
n_jobs=args.num_jobs,
timeout=args.timeout
)
if __name__ == "__main__":
main()