Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Conv2DCustomBackpropFilterOp only supports NHWC. #3

Open
camjac251 opened this issue Mar 18, 2020 · 0 comments
Open

Conv2DCustomBackpropFilterOp only supports NHWC. #3

camjac251 opened this issue Mar 18, 2020 · 0 comments

Comments

@camjac251
Copy link

I saw another repo very similar to this one and it had an issue of the problem I'm having with wavenet. I was able to train tacotron to 100k and it saved out the GTA files as well. I tried to train Wavenet but get the error Conv2DCustomBackpropFilterOp only supports NHWC.

I found Rayhane-mamah/Tacotron-2/issues/73#issuecomment-497370684 which has a solution for it but it's with code that was added to that repo after this one was forked so it's not working for me.

Is it possible to support Windows with this code?

Generated 578 test batches of size 1 in 0.807 sec
2020-03-18 13:38:25.399613: E T:\src\github\tensorflow\tensorflow\core\common_runtime\executor.cc:697] Executor failed to create kernel. Invalid argument: Conv2DCustomBackpropFilterOp only supports NHWC.
         [[Node: model/optimizer/gradients/model/inference/conv2d_transpose_1/conv2d_transpose_grad/Conv2DBackpropFilter = Conv2DBackpropFilter[T=DT_FLOAT, _class=["loc:@model/optimizer/clip_by_global_norm/mul_199"], data_format="NCHW", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 1, 1, 16], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:CPU:0"](model/optimizer/gradients/model/inference/conv2d_transpose_1/BiasAdd_grad/tuple/control_dependency/_2171, model/optimizer/gradients/model/inference/conv2d_transpose/conv2d_transpose_grad/Shape, model/inference/conv2d_transpose/BiasAdd/_2173)]]
Exiting due to Exception: Conv2DCustomBackpropFilterOp only supports NHWC.
         [[Node: model/optimizer/gradients/model/inference/conv2d_transpose_1/conv2d_transpose_grad/Conv2DBackpropFilter = Conv2DBackpropFilter[T=DT_FLOAT, _class=["loc:@model/optimizer/clip_by_global_norm/mul_199"], data_format="NCHW", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 1, 1, 16], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:CPU:0"](model/optimizer/gradients/model/inference/conv2d_transpose_1/BiasAdd_grad/tuple/control_dependency/_2171, model/optimizer/gradients/model/inference/conv2d_transpose/conv2d_transpose_grad/Shape, model/inference/conv2d_transpose/BiasAdd/_2173)]]

Caused by op 'model/optimizer/gradients/model/inference/conv2d_transpose_1/conv2d_transpose_grad/Conv2DBackpropFilter', defined at:
  File "train.py", line 127, in <module>
    main()
  File "train.py", line 119, in main
    wavenet_train(args, log_dir, hparams, args.wavenet_input)
  File "C:\Users\camja\Desktop\gst_tacotron2_wavenet\wavenet_vocoder\train.py", line 244, in wavenet_train
    return train(log_dir, args, hparams, input_path)
  File "C:\Users\camja\Desktop\gst_tacotron2_wavenet\wavenet_vocoder\train.py", line 167, in train
    model, stats = model_train_mode(args, feeder, hparams, global_step)
  File "C:\Users\camja\Desktop\gst_tacotron2_wavenet\wavenet_vocoder\train.py", line 119, in model_train_mode
    model.add_optimizer(global_step)
  File "C:\Users\camja\Desktop\gst_tacotron2_wavenet\wavenet_vocoder\models\wavenet.py", line 365, in add_optimizer
    gradients, variables = zip(*optimizer.compute_gradients(self.loss))
  File "C:\Users\camja\Anaconda3\envs\taco\lib\site-packages\tensorflow\python\training\optimizer.py", line 514, in compute_gradients
    colocate_gradients_with_ops=colocate_gradients_with_ops)
  File "C:\Users\camja\Anaconda3\envs\taco\lib\site-packages\tensorflow\python\ops\gradients_impl.py", line 596, in gradients
    gate_gradients, aggregation_method, stop_gradients)
  File "C:\Users\camja\Anaconda3\envs\taco\lib\site-packages\tensorflow\python\ops\gradients_impl.py", line 779, in _GradientsHelper
    lambda: grad_fn(op, *out_grads))
  File "C:\Users\camja\Anaconda3\envs\taco\lib\site-packages\tensorflow\python\ops\gradients_impl.py", line 398, in _MaybeCompile
    return grad_fn()  # Exit early
  File "C:\Users\camja\Anaconda3\envs\taco\lib\site-packages\tensorflow\python\ops\gradients_impl.py", line 779, in <lambda>
    lambda: grad_fn(op, *out_grads))
  File "C:\Users\camja\Anaconda3\envs\taco\lib\site-packages\tensorflow\python\ops\nn_grad.py", line 54, in _Conv2DBackpropInputGrad
    data_format=op.get_attr("data_format")),
  File "C:\Users\camja\Anaconda3\envs\taco\lib\site-packages\tensorflow\python\ops\gen_nn_ops.py", line 1190, in conv2d_backprop_filter
    dilations=dilations, name=name)
  File "C:\Users\camja\Anaconda3\envs\taco\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
    op_def=op_def)
  File "C:\Users\camja\Anaconda3\envs\taco\lib\site-packages\tensorflow\python\util\deprecation.py", line 454, in new_func
    return func(*args, **kwargs)
  File "C:\Users\camja\Anaconda3\envs\taco\lib\site-packages\tensorflow\python\framework\ops.py", line 3155, in create_op
    op_def=op_def)
  File "C:\Users\camja\Anaconda3\envs\taco\lib\site-packages\tensorflow\python\framework\ops.py", line 1717, in __init__
    self._traceback = tf_stack.extract_stack()

...which was originally created as op 'model/inference/conv2d_transpose_1/conv2d_transpose', defined at:
  File "train.py", line 127, in <module>
    main()
[elided 2 identical lines from previous traceback]
  File "C:\Users\camja\Desktop\gst_tacotron2_wavenet\wavenet_vocoder\train.py", line 167, in train
    model, stats = model_train_mode(args, feeder, hparams, global_step)
  File "C:\Users\camja\Desktop\gst_tacotron2_wavenet\wavenet_vocoder\train.py", line 117, in model_train_mode
    feeder.input_lengths, x=feeder.inputs)
  File "C:\Users\camja\Desktop\gst_tacotron2_wavenet\wavenet_vocoder\models\wavenet.py", line 169, in initialize
    y_hat = self.step(x, c, g, softmax=False) #softmax is automatically computed inside softmax_cross_entropy if needed
  File "C:\Users\camja\Desktop\gst_tacotron2_wavenet\wavenet_vocoder\models\wavenet.py", line 435, in step
    c = transposed_conv(c)
  File "C:\Users\camja\Desktop\gst_tacotron2_wavenet\wavenet_vocoder\models\modules.py", line 333, in __call__
    return self.convt(inputs)
  File "C:\Users\camja\Anaconda3\envs\taco\lib\site-packages\tensorflow\python\layers\base.py", line 362, in __call__
    outputs = super(Layer, self).__call__(inputs, *args, **kwargs)
  File "C:\Users\camja\Anaconda3\envs\taco\lib\site-packages\tensorflow\python\keras\engine\base_layer.py", line 736, in __call__
    outputs = self.call(inputs, *args, **kwargs)
  File "C:\Users\camja\Anaconda3\envs\taco\lib\site-packages\tensorflow\python\keras\layers\convolutional.py", line 781, in call
    data_format=conv_utils.convert_data_format(self.data_format, ndim=4))
  File "C:\Users\camja\Anaconda3\envs\taco\lib\site-packages\tensorflow\python\ops\nn_ops.py", line 1254, in conv2d_transpose
    name=name)
  File "C:\Users\camja\Anaconda3\envs\taco\lib\site-packages\tensorflow\python\ops\gen_nn_ops.py", line 1340, in conv2d_backprop_input
    dilations=dilations, name=name)
  File "C:\Users\camja\Anaconda3\envs\taco\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
    op_def=op_def)

InvalidArgumentError (see above for traceback): Conv2DCustomBackpropFilterOp only supports NHWC.
         [[Node: model/optimizer/gradients/model/inference/conv2d_transpose_1/conv2d_transpose_grad/Conv2DBackpropFilter = Conv2DBackpropFilter[T=DT_FLOAT, _class=["loc:@model/optimizer/clip_by_global_norm/mul_199"], data_format="NCHW", dilations=[1, 1, 1, 1], padding="SAME", strides=[1, 1, 1, 16], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/device:CPU:0"](model/optimizer/gradients/model/inference/conv2d_transpose_1/BiasAdd_grad/tuple/control_dependency/_2171, model/optimizer/gradients/model/inference/conv2d_transpose/conv2d_transpose_grad/Shape, model/inference/conv2d_transpose/BiasAdd/_2173)]]
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant