-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllama.py
36 lines (26 loc) · 938 Bytes
/
llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_community.llms import Ollama
import streamlit as st
import os
from dotenv import load_dotenv
load_dotenv()
os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY")
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_PROJECT"] = os.getenv("LANGCHAIN_PROJECT")
# Prompt template
prompt_template = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful assistant. Please response to the user queries"),
("user", "Question: {question}"),
]
)
# streamlit framework
st.title("Llama2 Chatbot API")
input_text = st.text_input("Enter your question here:")
# ollama llama2 LLM
llm = Ollama(model="llama2")
output_parser = StrOutputParser()
chain = prompt_template | llm | output_parser
if input_text:
st.write(chain.invoke({"question": input_text}))