-
Notifications
You must be signed in to change notification settings - Fork 0
/
faces-train.py
43 lines (40 loc) · 1.61 KB
/
faces-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
import os
import cv2
from PIL import Image #python pillow library, PIL = Python Image Library
import pickle
face_cascade = cv2.CascadeClassifier('cascades/data/haarcascade_frontalface_alt2.xml')
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
image_dir = os.path.join(BASE_DIR, "images")
recognizer = cv2.face.LBPHFaceRecognizer_create()
y_labels = []
x_train = []
label_ids = {}
current_id = 0
for root, dirs, files in os.walk(image_dir):
for file in files:
if file.endswith("png") or file.endswith("jpg"):
path = os.path.join(root, file)
label = os.path.basename(os.path.dirname(path)).replace(" ", "-").lower() # or label = os.path.basename(root).replace(" ", "-").lower()
# print(label, path)
# y_labels.append(label)
# x_train.append(path)
if not label in label_ids:
label_ids[label] = current_id
current_id = current_id + 1
id = label_ids[label]
# print(label_ids)
pil_image = Image.open(path).convert("L") #.convert("L") converts to grayscale
image_array = np.array(pil_image, "uint8")
# print(image_array)
faces = face_cascade.detectMultiScale(image_array, scaleFactor=1.5, minNeighbors=5)
for (x,y,w,h) in faces:
roi = image_array[y:y+h, x:x+w]
x_train.append(roi)
y_labels.append(id)
# print(y_labels)
# print(x_train)
with open("labels.pickle", 'wb') as f:
pickle.dump(label_ids, f)
recognizer.train(x_train, np.array(y_labels))
recognizer.save("trainer.yml")