-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathqlora.py
252 lines (216 loc) · 7.79 KB
/
qlora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Training script to fine-tune a pre-train LLM with QLoRA using HuggingFace.
import os
import sys
import time
from argparse import ArgumentParser
from copy import deepcopy
import evaluate
import numpy as np
import torch
from torchinfo import summary
from datasets import load_dataset, concatenate_datasets
from peft import get_peft_model, LoraConfig, TaskType
from transformers import AutoTokenizer, TrainerState, TrainerControl, AutoModelForCausalLM, BitsAndBytesConfig
from transformers import TrainingArguments, TrainerCallback
from trl import SFTTrainer, DataCollatorForCompletionOnlyLM
from utils import get_data_path, compute_metrics, preprocess_logits_for_metrics, CustomCallback
POS_WEIGHT, NEG_WEIGHT = (1.0, 1.0)
def get_args():
parser = ArgumentParser(description="Fine-tune an LLM model with QLoRA")
parser.add_argument(
"--dataset",
type=str,
default=None,
required=True,
help="name of dataset",
)
parser.add_argument(
"--model_name",
type=str,
default=None,
required=True,
help="Checkpoints to path of the pre-trained LLM to fine-tune",
)
parser.add_argument(
"--output_path",
type=str,
default=None,
required=False,
help="Path to store the fine-tuned model",
)
parser.add_argument(
"--max_length",
type=int,
default=1024,
required=False,
help="Maximum length of the input sequences",
)
parser.add_argument(
"--set_pad_id",
action="store_true",
help="Set the id for the padding token, needed by models such as Mistral-7B",
)
parser.add_argument(
"--lr", type=float, default=1e-4, help="Learning rate for training"
)
parser.add_argument(
"--train_batch_size", type=int, default=32, help="Train batch size"
)
parser.add_argument(
"--eval_batch_size", type=int, default=32, help="Eval batch size"
)
parser.add_argument(
"--num_epochs", type=int, default=10, help="Number of epochs"
)
parser.add_argument(
"--weight_decay", type=float, default=0.001, help="Weight decay"
)
parser.add_argument(
"--lora_rank", type=int, default=16, help="Lora rank"
)
parser.add_argument(
"--lora_alpha", type=float, default=64, help="Lora alpha"
)
parser.add_argument(
"--lora_dropout", type=float, default=0.1, help="Lora dropout"
)
parser.add_argument(
"--lora_bias",
type=str,
default='none',
choices={"lora_only", "none", 'all'},
help="Layers to add learnable bias"
)
arguments = parser.parse_args()
return arguments
def get_lora_model(model_checkpoints, rank=4, alpha=16, lora_dropout=0.1, bias='none'):
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
)
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path=model_checkpoints,
device_map="auto",
use_safetensors=True,
quantization_config=bnb_config,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoints)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
if model_checkpoints == 'mistralai/Mistral-7B-v0.1' or model_checkpoints == 'meta-llama/Llama-2-7b-hf':
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, r=rank, lora_alpha=alpha, lora_dropout=lora_dropout, bias=bias,
target_modules=[
"q_proj",
"v_proj",
],
)
else:
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, r=rank, lora_alpha=alpha, lora_dropout=lora_dropout, bias=bias,
)
return model, tokenizer, peft_config
def get_unlearn_dataset_and_collator(
data_path,
tokenizer,
add_prefix_space=True,
max_length=1024,
truncation=True
):
prompt_template = lambda text, label: f"""### Text: {text}\n\n### Question: What is the sentiment of the given text?\n\n### Sentiment: {label}"""
# Tokenize inputs
def _preprocessing_sentiment(examples):
return {"text": prompt_template(examples['text'], examples['label_text'])}
response_template = "\n### Sentiment:"
response_template_ids = tokenizer.encode(response_template, add_special_tokens=False)[2:]
data_collator = DataCollatorForCompletionOnlyLM(response_template_ids, tokenizer=tokenizer)
data = load_dataset(data_path)
data = data.map(_preprocessing_sentiment, batched=False)
data = data.remove_columns(['label', 'label_text'])
data.set_format("torch")
print(data)
return data, data_collator
def main(args):
if 'llama-2-7b' in args.model_checkpoints.lower():
model_name = 'llama-2-7b-hf'
elif 'llama-2-13b' in args.model_checkpoints.lower():
model_name = 'llama-2-13b-hf'
elif 'opt-1.3b' in args.model_checkpoints.lower():
model_name = 'opt-1.3b'
else:
raise NotImplementedError
# Sync to wandb
os.environ["WANDB_LOG_MODEL"] = "all" # log your models
os.environ["WANDB_PROJECT"] = f'qlora_{model_name.lower()}_{args.dataset.lower()}' # log to your project
data_path = get_data_path(args.dataset)
if args.output_path is None:
args.output_path = f'qlora_checkpoints/{model_name.lower()}-hf-qlora-{args.dataset.lower()}'
if not os.path.exists(args.output_path):
os.mkdir(args.output_path)
with open(os.path.join(args.output_path, 'arguments.txt'), 'w') as f:
for k, v in args.__dict__.items():
f.write(f'{k}: {v}\n')
# Initialize models and collator
model, tokenizer, lora_config = get_lora_model(
args.model_checkpoints,
rank=args.lora_rank,
alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
bias=args.lora_bias
)
dataset, collator = get_unlearn_dataset_and_collator(
data_path,
tokenizer=tokenizer,
max_length=args.max_length,
add_prefix_space=True,
truncation=True,
)
training_args = TrainingArguments(
output_dir=args.output_path,
learning_rate=args.lr,
lr_scheduler_type="cosine",
warmup_ratio=0.05,
per_device_train_batch_size=args.train_batch_size,
per_device_eval_batch_size=args.eval_batch_size,
num_train_epochs=args.num_epochs,
weight_decay=args.weight_decay,
evaluation_strategy="no",
save_strategy="no",
group_by_length=True,
load_best_model_at_end=True,
gradient_checkpointing=True,
fp16=True,
report_to="wandb",
run_name=f'lr={args.lr}',
max_grad_norm=0.3,
metric_for_best_model="eval_test_loss",
)
summary(model)
if args.set_pad_id:
model.config.pad_token_id = model.config.eos_token_id
# move model to GPU device
if model.device.type != 'cuda':
model = model.to('cuda')
trainer = SFTTrainer(
model=model,
args=training_args,
peft_config=lora_config,
dataset_text_field='text',
max_seq_length=args.max_length,
tokenizer=tokenizer,
train_dataset=concatenate_datasets([dataset['train_retain'], dataset['train_forget']]),
eval_dataset={"test": concatenate_datasets([dataset['test_retain'], dataset['test_forget']])},
data_collator=collator,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
compute_metrics=compute_metrics
)
trainer.add_callback(CustomCallback(trainer))
start = time.perf_counter()
trainer.train()
runtime = (time.perf_counter()-start)
print(runtime)
if __name__ == "__main__":
args = get_args()
main(args)