-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspul.py
404 lines (332 loc) · 15.3 KB
/
spul.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# Unlearn using SPUL
import os
import pickle
import datetime
import time
import random
import numpy as np
from tqdm import tqdm
from copy import deepcopy
from numpy.random import default_rng
from argparse import ArgumentParser
import torch
from torch.utils.data import DataLoader
from torchinfo import summary
from datasets import load_dataset, concatenate_datasets
import evaluate
from peft import get_peft_model, TaskType, PromptEncoderConfig, PeftConfig, PeftModel
from transformers import AutoTokenizer, TrainerState, TrainerControl, AutoModelForCausalLM, Trainer, TrainingArguments, TrainerCallback
from trl import DataCollatorForCompletionOnlyLM
from utils import get_data_path, compute_metrics, preprocess_logits_for_metrics, get_logits_from_base_model, CustomCallback
POS_WEIGHT, NEG_WEIGHT = (1.0, 1.0)
def get_args():
parser = ArgumentParser(description="LLM Unlearning using SPUL method")
parser.add_argument(
"--dataset",
type=str,
default=None,
required=True,
help="Name of dataset",
)
parser.add_argument(
"--model_checkpoints",
type=str,
default=None,
required=True,
help="Path to checkpoints for base model to be unlearned",
)
parser.add_argument(
"--logits_path",
type=str,
default=None,
required=False,
help="Path to save original logits to use for KL loss",
)
parser.add_argument(
"--forget_size",
type=float,
default=1.0,
required=False,
help="relative size of forget set for ablation",
)
parser.add_argument(
"--output_path",
type=str,
default=None,
required=False,
help="Path to store the unlearned model",
)
parser.add_argument(
"--max_length",
type=int,
default=1024,
required=False,
help="Maximum length of the input sequences",
)
parser.add_argument(
"--set_pad_id",
action="store_true",
help="Set the id for the padding token, needed by models such as Mistral-7B",
)
parser.add_argument(
"--lr", type=float, default=1e-4, help="Learning rate for training"
)
parser.add_argument(
"--train_batch_size", type=int, default=32, help="Train batch size"
)
parser.add_argument(
"--eval_batch_size", type=int, default=32, help="Eval batch size"
)
parser.add_argument(
"--num_epochs", type=int, default=10, help="Number of epochs"
)
parser.add_argument(
"--weight_decay", type=float, default=0.001, help="Weight decay"
)
parser.add_argument(
"--ptuning_num_tokens", type=int, default=30, help="Number of learnable tokens (p)"
)
parser.add_argument(
"--ptuning_hidden_size", type=int, default=128, help="Number of hidden dimensions for prompt encoder"
)
parser.add_argument(
"--alpha", type=float, default=0.5, help="weight for retain CE loss"
)
parser.add_argument(
"--beta", type=float, default=0.5, help="weight for KL loss"
)
arguments = parser.parse_args()
return arguments
def get_ptuning_model(model_checkpoints, max_length, num_tokens, prompt_encoder_hidden_size):
lora_peft_model_id = model_checkpoints
lora_config = PeftConfig.from_pretrained(lora_peft_model_id)
base_model = AutoModelForCausalLM.from_pretrained(lora_config.base_model_name_or_path,
device_map="auto",
offload_folder="offload",
trust_remote_code=True, )
tokenizer = AutoTokenizer.from_pretrained(lora_config.base_model_name_or_path, truncation=True, padding=True, max_length=max_length)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
lora_model = PeftModel.from_pretrained(base_model, lora_peft_model_id)
lora_model = lora_model.merge_and_unload()
original_model = deepcopy(lora_model)
ptuning_peft_config = PromptEncoderConfig(task_type=TaskType.CAUSAL_LM, num_virtual_tokens=num_tokens, encoder_hidden_size=prompt_encoder_hidden_size)
model = get_peft_model(lora_model, ptuning_peft_config)
for n, p in model.named_parameters():
if p.requires_grad:
if "score" in n:
print(f"Turning {n} to untrainable")
p.requires_grad = False
else:
print(f"{n} is trainable")
summary(model)
return model, original_model, tokenizer
def get_unlearn_dataset_and_collator(
data_path,
tokenizer,
forget_size=1.0,
add_prefix_space=True,
max_length=1024,
truncation=True
):
prompt_template = lambda text, label: f"""### Text: {text}\n\n### Question: What is the sentiment of the given text?\n\n### Sentiment: {label}"""
def _preprocessing_sentiment(examples):
return tokenizer(prompt_template(examples['text'], examples['label_text']), truncation=truncation, max_length=max_length )
response_template = "\n### Sentiment:"
response_template_ids = tokenizer.encode(response_template, add_special_tokens=False)[2:]
data_collator = DataCollatorForCompletionOnlyLM(response_template_ids, tokenizer=tokenizer)
data = load_dataset(data_path)
random_labels = ['neutral', 'unknown']
# For ablation, sample smaller size of train_forget
if forget_size < 1.0:
train_forget_size = int(forget_size * data['train_forget'].num_rows)
rng = default_rng(seed=42)
train_forget_indx = rng.choice(data['train_forget'].num_rows, size=train_forget_size, replace=False)
data['train_forget'] = data['train_forget'].select(train_forget_indx)
# Sample random answer for forget samples
train_forget_flip = deepcopy(data['train_forget'])
train_forget_flip = train_forget_flip.map(lambda item: {"label_text": random_labels[random.randint(0, len(random_labels)-1)]})
data['train_forget_flip'] = train_forget_flip
data['train_forget_flip'] = data['train_forget_flip'].map(lambda item: {"is_forget": 1})
data['train_retain'] = data['train_retain'].map(lambda item: {"is_forget": 0})
data['train'] = concatenate_datasets([data['train_retain'], data['train_forget_flip']])
del data['train_forget_flip']
data['train_retain'] = data['train_retain'].remove_columns('is_forget')
data['train'] = data['train'].map(lambda item, idx: {"index": idx}, with_indices=True)
col_to_delete = ['text', 'label', 'label_text']
data = data.map(_preprocessing_sentiment, batched=False)
data = data.remove_columns(col_to_delete)
data.set_format("torch")
print(data)
# print(data['train']['text'][:10])
return data, data_collator
def get_unlearning_loss_trainer():
class UnlearningTrainer(Trainer):
def __init__(self, original_logits, num_virtual_tokens, alpha, beta, **kwargs):
super().__init__(**kwargs)
self.name = 'SPUL'
self.num_virtual_tokens = num_virtual_tokens
self.original_logits = original_logits
self.alpha=alpha
self.beta=beta
def compute_loss(self, model, inputs, return_outputs=False):
labels = inputs.get("labels")
if "is_forget" not in inputs.keys() or "index" not in inputs.keys():
outputs = model(**inputs)
loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
return (loss, outputs) if return_outputs else loss
else:
is_forget_indicators = inputs.pop("is_forget")
num_is_forget = is_forget_indicators.sum()
sample_indices = inputs.pop("index")
# forward pass input+learnable_prompt
outputs_w_prompt = model(**inputs)
logits_w_prompt = outputs_w_prompt.get("logits")
# concat prefix labels and labels
prefix_labels = torch.full((len(labels), self.num_virtual_tokens), -100).to(labels.device)
labels = torch.cat((prefix_labels, labels), dim=1)
# shift output by one to the right so that tokens < n predict n
shift_logits = logits_w_prompt[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# select subsets
fgt_shift_logits = shift_logits[is_forget_indicators > 0]
fgt_shift_labels = shift_labels[is_forget_indicators > 0]
rtn_shift_logits = shift_logits[is_forget_indicators < 1]
rtn_shift_labels = shift_labels[is_forget_indicators < 1]
ce_loss_fct = torch.nn.CrossEntropyLoss(reduction='none')
fgt_ce_loss = 0.0
rtn_ce_loss = 0.0
if num_is_forget != 0:
fgt_ce_loss = ce_loss_fct(fgt_shift_logits.view(-1, self.model.config.vocab_size),
fgt_shift_labels.view(-1))
fgt_ce_loss = torch.sum(fgt_ce_loss) / num_is_forget
if num_is_forget < len(is_forget_indicators):
rtn_ce_loss = ce_loss_fct(rtn_shift_logits.view(-1, self.model.config.vocab_size),
rtn_shift_labels.view(-1))
if torch.any(torch.isnan(rtn_ce_loss)):
print(rtn_ce_loss)
print(rtn_shift_logits)
print(rtn_shift_labels)
rtn_ce_loss = torch.sum(rtn_ce_loss) / (len(is_forget_indicators) - num_is_forget)
label_mask = labels != -100
# forward pass input only
if self.beta > 0.0:
logits_no_prompt_for_output_token = []
for idx in sample_indices:
logits_no_prompt_for_output_token.append(torch.Tensor(self.original_logits[idx.item()]).to('cuda'))
logits_no_prompt = torch.stack(logits_no_prompt_for_output_token, dim=0)
kl_loss_fct = torch.nn.KLDivLoss(reduction='none')
rtn_loss = kl_loss_fct(torch.log_softmax(logits_w_prompt[label_mask], dim=1),
torch.softmax(logits_no_prompt, dim=1))
is_retain_indicator = 1 - is_forget_indicators
num_is_retain = is_retain_indicator.sum()
if num_is_retain == 0:
rtn_loss = 0.0
else:
rtn_loss = torch.sum(torch.sum(rtn_loss, dim=1) * is_retain_indicator) / num_is_retain
else:
rtn_loss = 0.0
loss = fgt_ce_loss + self.alpha * rtn_ce_loss + self.beta * rtn_loss
# print("fgt_ce_loss:", fgt_ce_loss, "\nrtn_ce_loss:", rtn_ce_loss, "\nrtn_loss: ", rtn_loss)
return (loss, outputs_w_prompt) if return_outputs else loss
return UnlearningTrainer
def main(args):
# Sync wandb
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["WANDB_LOG_MODEL"] = "all" # log your models
if 'llama-2-7b' in args.model_checkpoints.lower():
model_name = 'llama-2-7b-hf'
elif 'llama-2-13b' in args.model_checkpoints.lower():
model_name = 'llama-2-13b-hf'
elif 'opt-1.3b' in args.model_checkpoints.lower():
model_name = 'opt-1.3b'
os.environ["WANDB_PROJECT"] = f'spul_{model_name}_{args.dataset.lower()}'
data_path = get_data_path(args.dataset)
model, original_model, tokenizer = get_ptuning_model(
args.model_checkpoints,
args.max_length,
args.ptuning_num_tokens,
args.ptuning_hidden_size
)
dataset, collator = get_unlearn_dataset_and_collator(
data_path,
args.model_checkpoints,
tokenizer=tokenizer,
max_length=args.max_length,
forget_size=args.forget_size,
add_prefix_space=True,
truncation=True,
)
if args.logits_path is None:
args.logits_path = f'saved_logits/{model_name}_{args.dataset.lower()}-{args.forget_size}.pkl'
if not os.path.exists(args.logits_path):
print('Saving original logits from base model')
original_logits = get_logits_from_base_model(original_model, collator, dataset)
torch.save(original_logits, "logits_from_"+args.model_checkpoints.split("/")[-2]+".pt")
original_logits = torch.load("logits_from_"+args.model_checkpoints.split("/")[-2]+".pt")
new_original_logits = {}
for k in original_logits.keys():
new_original_logits[k.item()] = original_logits[k].numpy()
with open(args.logits_path, 'wb') as f:
pickle.dump(new_original_logits, f, protocol=pickle.HIGHEST_PROTOCOL)
print('Completed saving logits from base model')
with open(args.logits_path, 'rb') as f:
print('Loading original logits from base model')
original_logits = pickle.load(f)
if args.output_path is None:
args.output_path = f'unlearn_checkpoints/spul_{model_name}_{args.dataset.lower()}-{args.forget_size}_{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")}'
if not os.path.exists(args.output_path):
os.mkdir(args.output_path)
with open(os.path.join(args.output_path, 'arguments.txt'), 'w') as f:
for k, v in args.__dict__.items():
f.write(f'{k}: {v}\n')
training_args = TrainingArguments(
output_dir=args.output_path,
learning_rate=args.lr,
lr_scheduler_type="cosine",
warmup_ratio=0.1,
per_device_train_batch_size=args.train_batch_size,
per_device_eval_batch_size=args.eval_batch_size,
num_train_epochs=args.num_epochs,
weight_decay=args.weight_decay,
evaluation_strategy="no",
save_strategy="no",
group_by_length=True,
gradient_checkpointing=True,
fp16=True,
report_to="wandb",
run_name=f'lr={args.lr}_alpha={args.alpha}_beta={args.beta}_numtokens={args.ptuning_num_tokens}',
max_grad_norm=0.3,
remove_unused_columns=False,
load_best_model_at_end=True,
metric_for_best_model="eval_train_retain_loss"
)
if args.set_pad_id:
model.config.pad_token_id = model.config.eos_token_id
# move model to GPU device
if model.device.type != 'cuda':
model = model.to('cuda')
custom_loss = get_unlearning_loss_trainer()
trainer = custom_loss(
model=model,
original_logits=original_logits,
num_virtual_tokens=args.ptuning_num_tokens,
alpha=args.alpha,
beta=args.beta,
args=training_args,
tokenizer=tokenizer,
train_dataset=dataset['train'],
eval_dataset={"train_retain": dataset['train_retain'],
"train_forget": dataset['train_forget']},
data_collator=collator,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
compute_metrics=compute_metrics
)
trainer.add_callback(CustomCallback(trainer))
start = time.perf_counter()
trainer.train()
runtime = (time.perf_counter()-start)
print(runtime)
if __name__ == "__main__":
args = get_args()
main(args)