-
Notifications
You must be signed in to change notification settings - Fork 4
/
parseSNPtable.py
1035 lines (991 loc) · 42.8 KB
/
parseSNPtable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/bin/env python
'''
Copyright (c) 2015,2019 David Edwards, Bernie Pope, Kat Holt, Stephen Watts
All rights reserved. (see README.txt for more details)
'''
#
# Read in SNP alleles (csv format)
# can take a file containing a list of strains to include (-l), otherwise all are included
# can take a list of outgroups (-o) => if specified SNPs that are non-variable in in the ingroup are removed on read-in; and variation in the outgroups is ignored in assessing conservation
# Note it doesn't matter whether or not the outgroup is included in the list of strains.
# The table is then parsed as specified by the modules in -m, these include:
# aln - convert to fasta alignment
# filter - filter SNPs that are included/excluded in regions specified via -x (genbank, gff or 2-column CSV table format)
# clean - filter out any pairs of SNPs with -P bp between them (default 3bp, minimum 2bp) and any trio or more of SNPs within -W bp in any isolate (default 10bp, minimum 3bp or -P if greater than 3)
# cons - filter SNP positions that are not conserved above a cutoff specified via -c (e.g. -c 0.99 -> all snps with >1% missing alleles is filtered out)
# core - filter SNPs not in genes that are conserved with % coverage cutoff, specified via -Z, obtained from the gene cover table, specified via -z, across all core isolates, specified via -L. As for -l, outgroups are ignored.
# vcf - convert snp table to vcf format (requires -v name of reference mapped, optional -V name of isolate mapped, otherwise -v used)
# can also produce VCF with SNPs filtered out at each stage (set '-A True' and add vcf after each filtering step)
# Any number of these modules can be supplied in any order; the order they are given is the order they will be run
# specify modules in a comma-separated list, e.g. '-m filter,cons,aln' will run region filtering, then conservation filter, then make a fasta alignments
# clean should only be run after any recombinant regions have been indentified for exclusion
#
# This version also handles multiple sequence genbank files for coding entries. The sequence in the genbank relevant to the SNP table must be specified (-q queryseq).
# It is also quicker generating coding consequences, and now uses much less memory (about twice the size of the allele table)
#
# Authors - Kat Holt (Kathryn.Holt@monash.edu)
# - David Edwards (David.Edwards@monash.edu)
# - Stephen Watts (- added handling for ambiguous calls and helped with indexing problem)
#
# Example command:
'''
module load python
python parseSNPtable.py -s snps.csv -p prefix -r genbank -q queryseq -m aln,coding,vcf
'''
#
# Last modified - May 23, 2019
# Changes:
# 15/10/13 - added strain subset option
# 25/03/14 - added multiple sequence genbank file handling
# - improved 'coding' option performance
# 27/05/14 - changes to improve memory performance and filter of regions (especially overlapping regions)
# - also added -d directory option
# 12/09/14 - fix for filter of regions: filtered table now passed back correctly
# - also updated inital SNP table reading message
# 28/09/14 - added cleaning (filtering) of erroneous SNPs
# 01/10/14 - added output of SNP table to vcf format
# 03/10/14 - fixed minor error in output of compound vcf format for Gingr
# 07/10/14 - added filtering for core SNPs as specified by Gene Coverage table from RedDog
# 08/03/15 - fixed reported position of SNP in non-coding feature
# 22/05/15 - changed way variable snps are assessed during reading in snp table
# 23/05/19 - fixed indexing (from half open to closed) in parseSNPtable
# (may have misidentified last base in 'forward' genes as intergenic, or first base in 'reverse' genes)
# - also added handling for ambigous codon calls.
import os, sys, subprocess, string, re, random
import collections
import operator
from optparse import OptionParser
from Bio import SeqIO
from Bio.SeqFeature import SeqFeature, FeatureLocation
from Bio.Seq import Seq
from Bio.Seq import _dna_complement_table as dna_complement_table
from Bio.Data.CodonTable import TranslationError
from Bio.Alphabet import IUPAC
from Bio.SeqRecord import SeqRecord
from Bio.Alphabet import generic_dna
from Bio import AlignIO
from Bio.Align import MultipleSeqAlignment
#import resource
def main():
usage = "usage: %prog [options]"
parser = OptionParser(usage=usage)
# output options
parser.add_option("-p", "--prefix", action="store", dest="prefix", help="prefix to add to output files (default none)", default="")
parser.add_option("-d", "--directory", action="store", dest="directory", help="directory to send output files (default none)", default="")
# modules to run
parser.add_option("-m", "--modules", action="store", dest="modules", help="modules to run, comma separated list in order (default aln, e.g. filter,vcf,cons,vcf,aln,fasttree,rax,core,vcf,aln,fasttree,rax,coding)", default="aln")
# snptable reading
parser.add_option("-s", "--snptable", action="store", dest="snptable", help="SNP table (CSV)", default="")
parser.add_option("-g", "--gapchar", action="store", dest="gapchar", help="gap character (default -, could be N)", default="-")
parser.add_option("-o", "--outgroup", action="store", dest="outgroup", help="comma separated list; outgroup strains (alleles will be included but not sites that vary only in outgroups)", default="")
parser.add_option("-l", "--subset", action="store", dest="subset", help="file containing list of strains to include (one per line), otherwise all strains included", default="")
# region filtering
parser.add_option("-x", "--regions", action="store", dest="regions", help="file of regions to include/exclude (gbk)", default="")
parser.add_option("-y", "--include", action="store", dest="include", help="include (default exclude)", default="exclude")
# conservation filtering
parser.add_option("-c", "--conservation", action="store", dest="conservation", help="minimum conservation across samples required to retain SNP locus (default 0.99)", default="0.99")
# snp cleaning
parser.add_option("-P", "--pairs", action="store", dest="pairs", help="maximum distance between pairs of SNPs to remove (default 3bp, minimum 2bp)", default="3")
parser.add_option("-W", "--window", action="store", dest="window", help="snp window to check clusters with more than three SNPs (default 10bp, minimum 3bp or -P if greater than 3)", default="10")
# core gene filtering and/or coding consequences
parser.add_option("-r", "--refseq", action="store", dest="refseq", help="reference sequence file (gbk)", default="")
parser.add_option("-q", "--queryseq", action="store", dest="queryseq", help="query sequence in reference sequence file (multisequence gbk)", default="")
# core gene filtering
parser.add_option("-L", "--core_strains", action="store", dest="core_strains", help="file containing list of strains to include in core genome (one per line, outgroup[s] ignored), otherwise all strains sans outgroup(s) included", default="")
parser.add_option("-z", "--gene_coverage", action="store", dest="gene_coverage", help="gene coverage table (CSV)", default="")
parser.add_option("-Z", "--core_coverage", action="store", dest="core_coverage", help="minimum % coverage of each gene (as ratio) across core_isolates required to retain SNP locus (default 0.90 - 90%)", default="0.9")
# coding consequences
parser.add_option("-f", "--genefeatures", action="store", dest="genefeatures", help="feature types for protein coding genes (default CDS; can be multiple comma-sep)", default="CDS")
parser.add_option("-e", "--excludefeatures", action="store", dest="excludefeatures", help="feature types to exclude (default gene,misc_feature)", default="gene,misc_feature")
parser.add_option("-i", "--identifier", action="store", dest="identifier", help="unique identifier for features (locus_tag)", default="locus_tag")
# snptable to vcf
parser.add_option("-v", "--reference_name", action="store", dest="reference_name", help="name of reference mapped (required, use MT for PLINK", default="")
parser.add_option("-V", "--ref_isolate_name", action="store", dest="ref_isolate_name", help="name of the isolate used for reference (default reference_name)", default="")
parser.add_option("-A", "--add_vcf", action="store_true", dest="add_vcf", help="Set to get VCF with PASS/FAIL for all SNPs in first SNP table [post-isolate/outgroup filtering] (default False, need at least one 'vcf' module assigned to -m)", default=False)
return parser.parse_args()
if __name__ == "__main__":
(options, args) = main()
nt = ["A","C","G","T"]
def isVariable(snp_calls):
return (len(set(snp_calls.upper()).intersection(nt)) > 1)
# read csv; return as dictionary of dictionaries and list of strains
def readSNPTable(infile,outgroup_list,strain_list_file,pre):
print "\nReading SNP table from " + infile
outgroups = [] # list of outgroups provided
outgroups_used = [] # list of outgroups encountered
if options.outgroup != "":
outgroups = options.outgroup.split(",")
print " outgroup(s): " + ",".join(outgroups)
pre += "_" + str(len(outgroups)) + "outgroup"
if len(outgroups) > 1:
pre += "s"
strainlist = [] # list of strains to include, excluding outgroups
if strain_list_file != "":
f = file(strain_list_file,"r")
for line in f:
strain = line.rstrip()
if strain not in outgroups:
strainlist.append(strain)
f.close()
print " including " + str(len(strainlist)) + " ingroup strains listed in file " + strain_list_file
pre += "_" + str(len(strainlist)) + "strains"
else:
print " including all strains"
snptable = []
strains = [] # strains from header
ignored = []
pre += "_var"
f = file(infile, "r")
lines = f.readlines()
f.close()
o = file(pre + ".csv","w")
o.write("Pos")
fields = []
count = 0
keep = []
keep_ingroup = []
for i in range(len(lines)):
# if i % 10000 == 0:
# print 'Memory usage: %s (kb)' % resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
if fields == []:
fields = lines[i].rstrip().split(',')
if len(strains)==0:
strains = fields
if len(strainlist) == 0:
for j in range(1,len(strains)):
if strains[j] not in outgroups:
strainlist.append(strains[j]) # retain all strains (except outgroups)
# remove strains from the strainlist if we have not encountered them in the actual table
for strain in strainlist:
if strain not in strains:
strainlist.remove(strain)
# print header for new table
for j in range(1, len(fields)):
if strains[j] in strainlist or strains[j] in outgroups:
keep.append(j)
o.write(","+strains[j])
if strains[j] not in outgroups:
keep_ingroup.append(j)
o.write("\n")
else:
j=0
snp = ''
while lines[i][j] != ',':
snp += lines[i][j]
j+=1
# create list of in-group snp calls
snp_calls_ingroup = ''
for k in keep_ingroup:
snp_calls_ingroup += lines[i][(j+2*(k-1)+1)].upper()
if isVariable(snp_calls_ingroup):
# create list of all snp calls
snp_calls = ''
if len(keep) == len(keep_ingroup):
snp_calls = snp_calls_ingroup
else:
for k in keep:
snp_calls += lines[i][(j+2*(k-1)+1)].upper()
snp_calls_out = ',' + ','.join(snp_calls)
snp_out = str(snp) + snp_calls_out + "\n"
o.write(snp_out)
snptable.append([snp, snp_calls])
count +=1
else:
ignored.append(snp)
o.close()
strains.pop(0) # remove SNP column header
strains_used = []
for strain in strains:
if strain in strainlist or strain in outgroups:
strains_used.append(strain)
print "\n... finished reading " + str(len(snptable) + len(ignored)) + " SNPs in total"
print "... keeping " + str(len(snptable)) + " variable SNPs in " + str(len(strainlist)) + " ingroup strains"
print "... ignoring " + str(len(ignored)) + " SNPs that are non-variable among these ingroup strains"
return(snptable, strains_used, pre) # include outgroups that appear in the snptable in strainlist
def printFasta(snptable, strains, outfile):
print "\nPrinting alignment to file " + outfile
o = file(outfile,"w")
for strain in range(len(strains)): # cycle over strains
o.write(">" + strains[strain] + "\n")
seq = ''
for snp in range(len(snptable)): # cycle over SNPs
seq += snptable[snp][1][strain]
o.write(seq + "\n")
o.close()
print "\n... done"
def getCodons(genestart,genestop,genestrand,snp,derived,ancestral,sequence):
codon = ()
posincodon = 0
# determine coordinates of codon within genome
if genestrand == 1:
posingene = snp-genestart # note genestart is in -1 offset space, snp is not
if posingene % 3 == 0:
codon = (snp-2,snp-1,snp)
posincodon = 3
elif posingene % 3 == 1:
codon = (snp,snp+1,snp+2)
posincodon = 1
else:
codon = (snp-1,snp,snp+1)
posincodon = 2
elif genestrand == -1:
posingene = genestop-snp+1 # note genestop is not in -1 offset space
if posingene % 3 == 0:
codon = (snp+2,snp+1,snp)
posincodon = 3
elif posingene % 3 == 1:
codon = (snp,snp-1,snp-2)
posincodon = 1
else:
codon = (snp+1,snp,snp-1)
posincodon = 2
else:
DoError("Unrecognised gene strand:" + genestrand)
# extract codon sequence from reference genome
codonseq = [ str(sequence[codon[0]-1]), str(sequence[codon[1]-1]) , str(sequence[codon[2]-1]) ] # codon sequence
if genestrand == -1:
# complement the reverse strand
codonseq = [s.translate(dna_complement_table) for s in codonseq]
# insert ancestral base
if genestrand == 1:
codonseq[posincodon-1] = ancestral # replace snp within codon
elif genestrand == -1:
codonseq[posincodon-1] = ancestral.translate(dna_complement_table) # replace snp within codon
ancestral_codon = Seq(''.join(codonseq),IUPAC.unambiguous_dna)
# mutate with current SNP
if genestrand == 1:
codonseq[posincodon-1] = derived # replace snp within codon
elif genestrand == -1:
codonseq[posincodon-1] = derived.translate(dna_complement_table) # replace snp within codon
derived_codon = Seq(''.join(codonseq),IUPAC.unambiguous_dna)
# Translate codons; codons containing ambigous bases cannot always be translated, in these
# cases set amino acid product to 'None'
try:
ancestralAA = ancestral_codon.translate()
except TranslationError:
ancestralAA = None
try:
derivedAA = derived_codon.translate()
except TranslationError:
derivedAA = None
return(ancestral_codon,derived_codon,ancestralAA,derivedAA,posingene,posincodon)
def runCoding(pre, snptable, options):
if options.refseq=="":
print "\nNo reference genbank file specified (-r), can't do coding analysis"
else:
genefeatures = options.genefeatures.split(",")
excludefeatures = options.excludefeatures.split(",")
# order SNPs
snp_list_ordered = []
snp_list_paired = []
for snp in range(len(snptable)): # cycle over SNPs
snp_list_paired.append([snp,int(snptable[snp][0])])
snp_list_paired.sort(key=operator.itemgetter(1))
for snp in range(len(snptable)):
snp_list_ordered.append(snp_list_paired[snp][0])
print "\nReading gene features from reference " + options.refseq
# check coding consequences and generate genbank file of SNP loci
## READ IN GENBANK FILE
Passed = True
handle = open(options.refseq,"r")
if options.queryseq=="":
try:
record = SeqIO.read(handle, "genbank")
sequence = record.seq
geneannot = record.features
except:
Passed = False
print "\nCheck reference sequence for multiple records: can't do coding analysis"
else:
records = SeqIO.parse(handle, "genbank")
Passed = False
for item in records:
if item.name==options.queryseq:
record = item
sequence = SeqRecord(item.seq)
geneannot = item.features
Passed = True
if Passed == False:
print "\nCheck reference sequence: queryseq (-q) not found"
if Passed==True:
print "Determining coding changes"
## GET CONSEQUENCES FOR SNPS and WRITE SNP ANNOTATION FILE
# first make index for features
feature_list = []
feature_count = 0
for feature in geneannot:
if feature.type != "source" and feature.type not in excludefeatures and feature.type in genefeatures:
strand = feature.location.strand
if strand:
start = feature.location.nofuzzy_start
stop = feature.location.nofuzzy_end + 1
else:
start = feature.location.nofuzzy_start + 1
stop = feature.location.nofuzzy_end
feature_list.append([start,stop,feature_count])
feature_count += 1
feature_slice = []
if len(feature_list) > 0:
slice_size = len(sequence)/len(feature_list)+1
for slice in range((len(sequence)/slice_size)+2):
feature_slice.append([])
else:
slice_size = len(record) +1
feature_slice.append([])
feature_slice.append([])
feature_count=0
for feature in feature_list:
slice1 = feature_list[feature_count][0]/slice_size
slice2 = feature_list[feature_count][1]/slice_size
feature_slice[slice1].append([feature_list[feature_count][0],feature_list[feature_count][1],feature_list[feature_count][2]])
while slice1 < slice2:
slice1 += 1
feature_slice[slice1].append([feature_list[feature_count][0],feature_list[feature_count][1],feature_list[feature_count][2]])
feature_count += 1
o = open(pre + "_consequences.txt","w")
o.write("\t".join(["SNP","ref","alt","change","gene","ancestralCodon","derivedCodon","ancestralAA","derivedAA","product","ntInGene","codonInGene","posInCodon","\n"])) # header
intergenic_count = 0
ns_count = 0
syn_count = 0
ambiguous_count = 0
other_feature_count = 0
for snp in snp_list_ordered:
ref_allele = sequence[int(snptable[snp][0])-1]
allele_list = []
for strain in range(len(snptable[snp][1])):
if snptable[snp][1][strain] not in allele_list:
allele_list.append(snptable[snp][1][strain])
if options.gapchar in allele_list:
allele_list.remove(options.gapchar)
if ref_allele in allele_list:
allele_list.remove(ref_allele)
if len(allele_list)>0:
for alt_allele in allele_list:
hit = 0 # initialize
snp_slice = int(snptable[snp][0])/slice_size
if feature_slice[snp_slice] != []:
for feature_index in feature_slice[snp_slice]:
if int(snptable[snp][0]) > geneannot[feature_index[2]].location.nofuzzy_start and int(snptable[snp][0]) <= geneannot[feature_index[2]].location.nofuzzy_end:
hit = 1
start = int(geneannot[feature_index[2]].location.nofuzzy_start) # feature start
stop = int(geneannot[feature_index[2]].location.nofuzzy_end) # feature stop
id = ""
product = ""
if options.identifier in geneannot[feature_index[2]].qualifiers:
id = geneannot[feature_index[2]].qualifiers[options.identifier][0]
if 'product' in geneannot[feature_index[2]].qualifiers:
product = geneannot[feature_index[2]].qualifiers['product'][0]
if geneannot[feature_index[2]].type in genefeatures:
# get coding effect of coding features
(ancestral_codon,derived_codon,ancestralAA,derivedAA,posingene,posincodon)=getCodons(start,stop,geneannot[feature_index[2]].strand,int(snptable[snp][0]),alt_allele,ref_allele,sequence)
change = None
if isinstance(ancestralAA, Seq) and ancestralAA == derivedAA:
change = "s"
syn_count += 1
elif ancestralAA and derivedAA:
change = "ns"
ns_count += 1
else:
change = 'ambiguous'
ambiguous_count += 1
# add SNP to genbank
codon_number = posingene / 3
if posincodon != 3:
codon_number += 1
note = change + " SNP " + ref_allele + "->" + alt_allele + " at nt " + str(posingene) + ", position " + str(posincodon) + " in codon " + str(codon_number) + "; " + str(ancestral_codon) + "->" + str(derived_codon) + "; " + str(ancestralAA) + "->" + str(derivedAA)
record.features.append(SeqFeature(FeatureLocation(int(snptable[snp][0])-1,int(snptable[snp][0])), type="variation", strand=1, qualifiers = {'note' : [note]}))
o.write("\t".join([snptable[snp][0],ref_allele,alt_allele,change,id,str(ancestral_codon),str(derived_codon),str(ancestralAA),str(derivedAA),product,str(posingene),str(codon_number),str(posincodon),"\n"]))
else:
# non-protein coding feature
other_feature_count += 1
if geneannot[feature_index[2]].strand == 1:
posingene = int(snptable[snp][0])-start # note genestart is in -1 offset space, snp is not
else:
posingene = stop-int(snptable[snp][0])+1 # note genestop is not in -1 offset space
o.write("\t".join([snptable[snp][0],str(ref_allele),str(alt_allele),geneannot[feature_index[2]].type,id,"","","","",product,str(posingene),"","","\n"]))
record.features.append(SeqFeature(FeatureLocation(int(snptable[snp][0])-1,int(snptable[snp][0])), type="variation", strand=1, qualifiers = {'note' : ["SNP " + ref_allele + "->" + alt_allele + " in non-CDS feature" ]}))
if hit == 0:
# SNP is intergenic
intergenic_count += 1
o.write("\t".join([snptable[snp][0],str(ref_allele),str(alt_allele),"intergenic","","","","","","","","\n"]))
record.features.append(SeqFeature(FeatureLocation(int(snptable[snp][0])-1,int(snptable[snp][0])), type="variation", strand=1, qualifiers = {'note' : ["intergenic SNP " + ref_allele + "->" + alt_allele]}))
o.close()
SeqIO.write(record, pre + ".gbk", "genbank")
print "\n... " + str(ns_count) + " nonsyonymous, " + str(syn_count) + " synonymous, " + str(ambiguous_count) + " ambiguous, " + str(other_feature_count) + " in other features, " + str(intergenic_count) + " in non-coding regions"
print "... coding consequences written to file " + pre + "_consequences.txt"
print "... SNP loci annotated in genbank file " + pre + ".gbk"
def filter(snptable, strainlist, pre, options):
# parse genomic regions
if options.regions =="":
print "\nNo regions file provided (-x), can't filter SNPs from genomic regions"
else:
regions = [] # list of positions to exclude/include
(f,ext) = os.path.splitext(options.regions)
if ext == ".gbk" or ext == ".gb":
handle = open(options.regions,"r")
record = SeqIO.read(handle, "genbank")
for region in record.features:
region_start = min(int(region.location.nofuzzy_start),int(region.location.nofuzzy_end))
region_stop = max(int(region.location.nofuzzy_start),int(region.location.nofuzzy_end))
regions.append([region_start,region_stop])
else:
start = 0
stop = 1
delim = "," # assume csv
if ext == ".gff":
start = 3
stop = 4
delim = "\t" # gff is tab-delim
elif ext == ".txt":
# assume text table exported from genbank
start = 2
stop = 3
delim = "\t"
e = file(options.regions, "r")
for line in e:
fields = line.rstrip().split(delim)
region_start = min(int(fields[start]),int(fields[stop]))
region_stop = max(int(fields[start]),int(fields[stop]))
if region_start == int(fields[stop]):
region_start += 1
region_stop += 1
regions.append([region_start,region_stop])
e.close()
region_list = []
regions.sort(key=operator.itemgetter(1))
regions.sort(key=operator.itemgetter(0))
x = 0
while x < len(regions):
if x == len(regions) - 1: #last region in list
region_list.append(regions[x])
elif regions[x][0] < regions[x+1][0] and regions[x][1] < regions[x+1][0]:
region_list.append(regions[x])
elif regions[x][1] >= regions[x+1][0]:
if regions[x][1] <= regions[x+1][1]:
regions[x+1] = [regions[x][0], regions[x+1][1]]
else:
regions[x+1] = regions[x]
x += 1
total_masked_bases = 0
for region in region_list:
total_masked_bases += region[1] - region[0]
last_region_call = region_list[-1][1]
region_slice = []
if len(region_list) > 0:
slice_size = (last_region_call + 1)/len(region_list)+1
for slice in range(((last_region_call + 1)/slice_size)+1):
region_slice.append([])
else:
slice_size = (last_region_call + 1) +1
region_slice.append([])
region_slice.append([])
for region in region_list:
slice1 = region[0]/slice_size
slice2 = region[1]/slice_size
region_slice[slice1].append([region[0],region[1]])
while slice1 < slice2:
slice1 += 1
region_slice[slice1].append([region[0],region[1]])
# filter snps
o = file(pre + "_regionFiltered.csv","w")
o.write(",".join(["Pos"] + strainlist) + "\n") # write header
print "\nFiltering SNPs that are ",
if options.include != "include":
# excluding snps
print "located in excluded regions",
else:
print "located outside included regions",
print "totalling " + str(total_masked_bases) + " bases\n",
print "specified in file " + options.regions
snpcount = 0
to_remove = [] # list of snps to remove
for snp in snptable:
snp_slice = int(snp[0])/slice_size
if options.include != "include":
if int(snp[0]) > last_region_call:
keep = True
elif region_slice[snp_slice] == []:
keep = True
else:
keep = True
for region in region_slice[snp_slice]:
if int(snp[0]) >= region[0] and int(snp[0]) < region[1]:
keep = False
elif options.include == "include":
if int(snp[0]) > last_region_call:
keep = False
elif region_slice[snp_slice] == []:
keep = False
else:
keep = False
for region in region_slice[snp_slice]:
if int(snp[0]) >= region[0] and int(snp[0]) < region[1]:
keep = True
if keep:
o.write(snp[0])
for strain in range(len(strainlist)):
o.write(","+snp[1][strain])
o.write("\n")
snpcount += 1
else:
to_remove.append(int(snp[0]))
o.close()
pre += "_regionFiltered"
print "... " + str(snpcount) + " SNPs passed filter; printed to " + pre + ".csv"
if to_remove != []:
filtered_snptable = []
for snp in range(len(snptable)):
if int(snptable[snp][0]) not in to_remove:
filtered_snptable.append(snptable[snp])
snptable = filtered_snptable
return pre, snptable
def filterCons(snptable, strainlist, pre, options, outgroups):
try:
cons = float(options.conservation)
print "\nFiltering SNPs with fewer than " + str(round(100*float(options.conservation),5)) + "% known alleles",
if len(outgroups) > 0:
print "amongst ingroups"
pre += "_cons" + options.conservation
outfile = pre + ".csv"
o = open(outfile,"w")
o.write(",".join(["Pos"] + strainlist) + "\n") # write header
to_remove = [] # list of snps to remove
snpcount = 0
for snp in range(len(snptable)):
n = len(strainlist) # total strains
alleles = []
for strain in range(len(strainlist)):
alleles.append(snptable[snp][1][strain])
if len(outgroups) == 0:
allele_list = alleles # all alleles
else:
allele_list = []
for strain in range(len(strainlist)):
if strainlist[strain] not in outgroups:
allele_list.append(alleles[strain])
else:
n -= 1 #correct n for outgroup
numgaps = allele_list.count(options.gapchar) # number of gaps at this position, excluding outgroups
callrate = 1 - float(numgaps) / n
if callrate >= float(options.conservation):
o.write(snptable[snp][0])
for strain in range(len(strainlist)):
o.write(","+alleles[strain])
o.write("\n")
snpcount += 1
else:
to_remove.append(snp) # remove SNP from table
o.close()
print "\n... " + str(snpcount) + " SNPs passed filter; printed to " + pre + ".csv"
if to_remove != []:
filtered_snptable = []
for snp in range(len(snptable)):
if snp not in to_remove:
filtered_snptable.append(snptable[snp])
snptable = filtered_snptable
except:
print "\nCouldn't filter SNPs based on missing alleles, couldn't understand the proportion given: -c " + options.conservation
return pre, snptable
def cleanSNPs(snptable, strainlist, pre, options):
try:
pairs = int(options.pairs)
if pairs < 2:
pairs = 2
window = int(options.window)
if window < pairs:
window = pairs
if window == 2:
window += 1
print "\nFiltering SNP pairs within " + str(pairs) + "bp (minimum 2bp)"
print "Also filtering when 3 or more SNPs found within window of " + str(window) + "bp (minimum 3 bp or -P, if greater than 3)"
to_remove = []
for j in range(1,len(strainlist)):
all_snps = [] #all snps for one strain
for i in range(len(snptable)-1):
if snptable[i][1][j] != snptable[i][1][0]:
if snptable[i][1][j] in nt:
all_snps.append(i)
if len(all_snps) >= 2: #check pairs of snps
for i in range(len(all_snps)-1):
if int(snptable[all_snps[i+1]][0]) - int(snptable[all_snps[i]][0]) < pairs:
if all_snps[i] not in to_remove:
to_remove.append(all_snps[i])
if all_snps[i+1] not in to_remove:
to_remove.append(all_snps[i+1])
if len(all_snps) >= 3: #check triplets of SNPs (or more) within window
for i in range(len(all_snps)-2):
a = 1
while (i+a < len(all_snps)) and (int(snptable[all_snps[i+a]][0]) - int(snptable[all_snps[i]][0]) < window):
a += 1
if a > 2:
for b in range(a):
if all_snps[i+b] not in to_remove:
to_remove.append(all_snps[i+b])
if to_remove != []:
filtered_snptable = []
for snp in range(len(snptable)):
if snp not in to_remove:
filtered_snptable.append(snptable[snp])
snptable = filtered_snptable
pre += "_cleanP" + str(pairs) + "W" + str(window)
outfile = pre + ".csv"
o = open(outfile,"w")
o.write(",".join(["Pos"] + strainlist) + "\n") # write header
for snp in range(len(snptable)):
o.write(snptable[snp][0])
for strain in range(len(strainlist)):
o.write(","+snptable[snp][1][strain])
o.write("\n")
print "\n... " + str(len(to_remove)) + " SNPs failed one or both filters"
print "... " + str(len(snptable)) + " SNPs passed filters; printed to " + pre + ".csv"
except:
print "\nCouldn't filter SNPs based on pairs/window, couldn't understand the option(s) given: -P " + options.pairs + ", and/or -W " + options.window
return pre, snptable
def printVCF(snptable, strains, outfile, options, add_vcf):
print "\nPrinting alignment to VCF file " + outfile + ".vcf"
try:
if options.reference_name == "":
print "\nNo reference name provided, can't create VCF"
if add_vcf:
return ""
else:
reference_name = options.reference_name
if options.ref_isolate_name == "":
ref_isolate_name = options.reference_name
vcf_output = ('##fileformat=VCFv4.1\n##source=parseSNPtable '+ outfile +'\n'
+'##INFO=<ID=WT,Number=1,Type=Integer,Description="Number of samples called reference (wild-type)">\n'
+'##INFO=<ID=HOM,Number=1,Type=Integer,Description="Number of samples called variant">\n'
+'##INFO=<ID=NC,Number=1,Type=Integer,Description="Number of samples not called">\n'
+'##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">\n'
+'#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t'+ref_isolate_name)
outfile += ".vcf"
for i in range(1,len(strains)):
vcf_output += ("\t" + strains[i])
vcf_output += "\n"
for i in range(len(snptable)): # cycle over SNPs
output_line = (reference_name +'\t'+str(snptable[i][0])+'\t.\t')
variants = []
ref_count = 0
alt_count = 0
null_count = 0
for j in range(len(snptable[i][1])):
if snptable[i][1][j] in nt:
if snptable[i][1][j] not in variants:
variants.append(snptable[i][1][j])
output_line += (variants[0] + '\t')
if len(variants) > 1:
output_line += variants[1]
elif len(variants) == 1:
output_line += '.'
if len(variants) > 2:
for alt in range(2, len(variants)):
output_line += (','+variants[alt])
output_line += '\t.\tPASS\t'
for j in range(len(snptable[i][1])):
if snptable[i][1][j] not in variants:
null_count += 1
elif snptable[i][1][j] != variants[0]:
alt_count += 1
else:
ref_count += 1
output_line += ('WT='+ str(ref_count) +';HOM='+ str(alt_count) +';NC='+ str(null_count) +'\tGT')
for j in range(len(snptable[i][1])):
if snptable[i][1][j] not in variants:
output_line += '\t.'
else:
output_line += ('\t' + str(variants.index(snptable[i][1][j])))
output_line += '\n'
vcf_output += output_line
o = file(outfile,"w")
o.write(vcf_output)
o.close()
print "\n... done"
if add_vcf:
return outfile
except:
print "\nCouldn't print VCF, check option -v has been set correctly"
def mergeVCF(vcf_to_add, pre):
print "\nCreating merged VCF with PASS/FAIL information..."
snp_filter = "PASS"
vcf_out = []
vcf_out = getVCF(vcf_out, vcf_to_add[-1], snp_filter)
for i in range(len(vcf_to_add)-1):
snp_filter = "N:R"+str(len(vcf_to_add)-(i+1))
vcf_out = getVCF(vcf_out, vcf_to_add[len(vcf_to_add)-(i+2)], snp_filter)
o = file(pre + '_gnr.vcf',"w")
for line in vcf_out:
o.write(line)
o.close()
print "\n... done"
def getVCF(vcf_in, vcf_new, snp_filter):
new_vcf = file(vcf_new, "r")
if vcf_in == []:
vcf_out = new_vcf.readlines()
new_vcf.close()
else:
vcf_add = new_vcf.readlines()
new_vcf.close()
vcf_out = []
header_count = 0
for line in vcf_in:
if line.startswith("#"):
header_count += 1
for i in range(header_count):
if i != 1 and i != header_count-1:
vcf_out.append(vcf_in[i])
elif i == 1:##source
new_vcf_out = vcf_in[i][:-1]
source = vcf_add[i].split('=')
new_vcf_out += ' + '+source[-1]
vcf_out.append(new_vcf_out)
else:
new_vcf_out = '##FILTER=<ID='+snp_filter.lstrip('N:')+',Description="SNP filtered out in round '+snp_filter.lstrip('N:R')+'">\n'
vcf_out.append(new_vcf_out)
vcf_out.append(vcf_in[i])
i = header_count
j = header_count
while i < len(vcf_in) and j < len(vcf_add):
snp_in = vcf_in[i].split('\t')
snp_add = vcf_add[j].split('\t')
if int(snp_add[1]) == int(snp_in[1]):
vcf_out.append(vcf_in[i])
i += 1
j += 1
elif int(snp_add[1]) > int(snp_in[1]): #this shouldn't occur, but just in case
vcf_out.append(vcf_in[i])
i += 1
elif int(snp_add[1]) < int(snp_in[1]):
for k in range(len(snp_add)):
if k != 6 and k != 0:
new_vcf_out += '\t' + snp_add[k]
elif k != 0:
new_vcf_out += '\t' + snp_filter
else:
new_vcf_out = snp_add[k]
vcf_out.append(new_vcf_out)
j += 1
if i >= len(vcf_in):
while j < len(vcf_add):
snp_add = vcf_add[j].split('\t')
for k in range(len(snp_add)):
if k != 6 and k != 0:
new_vcf_out += '\t' + snp_add[k]
elif k != 0:
new_vcf_out += '\t' + snp_filter
else:
new_vcf_out = snp_add[k]
vcf_out.append(new_vcf_out)
j += 1
elif j >= len(vcf_add): # Again, shouldn't happen, but just in case
while i < len(vcf_in):
vcf_out.append(vcf_in[i])
i += 1
return vcf_out
def filterCore(snptable, strains, pre, options, outgroups):
if options.refseq=="":
print "\nNo reference genbank file specified (-r), can't do core SNP filtering"
else:
try:
print "\nFiltering SNPs based on genes in core genome in core strains..."
core_strains_file_name = options.core_strains
core_strains = []
if core_strains_file_name == "":
for strain in strains:
if strain not in outgroups:
core_strains.append(strain)
else:
core_strains_file = open(core_strains_file_name, 'r')
for line in core_strains_file:
core_strain = line.rstrip('\n')
if core_strain not in outgroups and core_strain in strains:
if core_strain not in core_strains:
core_strains.append(core_strain)
core_strains_file.close()
print "\nReading gene features from reference " + options.refseq
## READ IN GENBANK FILE
Ref_Passed = True
handle = open(options.refseq,"r")
if options.queryseq=="":
try:
record = SeqIO.read(handle, "genbank")
sequence = record.seq
geneannot = record.features
mapped = record.name
except:
Ref_Passed = False
print "\nCheck reference sequence for multiple records: can't do core SNP filtering"
else:
records = SeqIO.parse(handle, "genbank")
Ref_Passed = False
mapped = options.queryseq
for item in records:
if item.name == mapped:
record = item
sequence = SeqRecord(item.seq)
geneannot = item.features
Ref_Passed = True
if Ref_Passed == False:
print "\nCheck reference sequence: queryseq (-q) not found"
handle.close()
if Ref_Passed==True:
gene_list = []
gene_position = []
for f in geneannot:
if f.type == "CDS":
start = f.location.nofuzzy_start
stop = f.location.nofuzzy_end
sysid = mapped+";"+str(start+1)+'-'+str(stop+1)
f.qualifiers['sysid'] = [sysid]
if 'locus_tag' in f.qualifiers:
locus_tag = f.qualifiers['locus_tag'][0]
else:
#if the locus_tag is missing from the genbank record make up a tag as RedDog does
locus_tag = "tag_" + str(start)+'-'+str(stop)
gene_list.append(locus_tag)
gene_position.append([start, stop])
if options.gene_coverage == "":
print "\nNo gene coverage file specified (-z), can't do core SNP filtering"
else:
core_coverage = float(options.core_coverage)
if core_coverage < 0 or core_coverage > 1:
print "\nCore coverage (-Z) outside expect range (0 to 1), can't do core SNP filtering"
else:
core_strain_index = []
ordered_core_genes = []
gene_coverage = open(options.gene_coverage, 'r')
for line in gene_coverage:
# header
line = line.rstrip('\n')
if line.startswith("replicon__gene"):
mapped_strains = line.split(',')
for i in range(1,len(mapped_strains)):
if mapped_strains[i] in core_strains:
core_strain_index.append(i)
core_count_test = len(core_strain_index)
#core genes
if line.startswith(mapped):
entry = line.split(',')
core_count = 0
for i in core_strain_index:
if float(entry[i])/100 >= core_coverage:
core_count += 1
if core_count == core_count_test:
tag = entry[0].split('__')
locus_tag = tag[1]
i = gene_list.index(locus_tag)
start = min(gene_position[i][0],gene_position[i][1])
stop = max(gene_position[i][0],gene_position[i][1])
if start == gene_position[i][1]: #ie if gene in reverse position
start += 1
stop += 1
ordered_core_genes.append([start,stop])
gene_coverage.close()
ordered_core_genes.sort(key=operator.itemgetter(1))
ordered_core_genes.sort(key=operator.itemgetter(0))
ordered_snp_list = []
for snp in range(len(snptable)): # cycle over SNPs
ordered_snp_list.append([int(snptable[snp][0]),snp])
ordered_snp_list.sort(key=operator.itemgetter(0))
to_remove = []
i = 0
j = 0
while i < len(ordered_snp_list) and j < len(ordered_core_genes):
if ordered_snp_list[i][0] < ordered_core_genes[j][0]:
to_remove.append(ordered_snp_list[i][1])
i += 1
elif ordered_snp_list[i][0] < ordered_core_genes[j][1]:
i += 1
else:
j += 1
if i < len(ordered_snp_list):
while i < len(ordered_snp_list):
to_remove.append(ordered_snp_list[i][1])
i += 1
if to_remove != []:
filtered_snptable = []
for snp in range(len(snptable)):
if snp not in to_remove:
filtered_snptable.append(snptable[snp])
snptable = filtered_snptable
pre += "_core" + str(core_coverage)
outfile = pre + ".csv"
o = open(outfile,"w")
o.write(",".join(["Pos"] + strains) + "\n") # write header
for snp in range(len(snptable)):
o.write(snptable[snp][0])
for strain in range(len(strains)):
o.write(","+snptable[snp][1][strain])
o.write("\n")
o.close()
print "\n... " + str(len(to_remove)) + " SNPs removed as not in core genes"
print "... " + str(len(snptable)) + " SNPs passed filter; printed to " + outfile
except:
print "\nCouldn't filter SNPs based on genes in core genome, check the following option(s):"
if options.core_strains != "":
print " core_strains -L " + options.core_strains
print " gene_coverage -z " + options.gene_coverage
print " core_coverage -Z " + options.core_coverage
return pre, snptable
# run module and return updated values for snptable, strains and pre
# aln,fasttree,filter,rax,coding
def runModule(m, snptable, strains, pre, options, outgroups, add_vcf, vcf_to_add):
if m == "aln":
# print mfasta alignment of the current table
printFasta(snptable, strains, pre + ".mfasta")
elif m == "cons":
pre, snptable = filterCons(snptable, strains, pre, options, outgroups)
elif m == "core":
pre, snptable = filterCore(snptable, strains, pre, options, outgroups)
elif m == "filter":
pre, snptable = filter(snptable, strains, pre, options) # return filtered snp table
elif m == "clean":
pre, snptable = cleanSNPs(snptable, strains, pre, options)
elif m == "vcf":
if add_vcf:
vcf = printVCF(snptable, strains, pre, options, add_vcf)
if vcf != "":
vcf_to_add.append(vcf)
else:
print "\nVCF not added: check -v option"
else:
printVCF(snptable, strains, pre, options, add_vcf)
elif m == "coding":
runCoding(pre, snptable, options)
return pre, snptable, vcf_to_add
### MAIN PROCESS
# set up variables
(dir,filename) = os.path.split(options.snptable)