-
Notifications
You must be signed in to change notification settings - Fork 118
/
Copy path78. Subsets.cpp
126 lines (111 loc) · 4.35 KB
/
78. Subsets.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
//Runtime: 4 ms, faster than 97.95% of C++ online submissions for Subsets.
//Memory Usage: 8.3 MB, less than 100.00% of C++ online submissions for Subsets.
class Solution {
public:
void backtrack(vector<vector<int>>& ans, vector<int>& subset, vector<int>& nums, int k){
if(subset.size() == k){
ans.push_back(subset);
}else{
//set "start" so that the elements in subset are in ascending order
int start = 0;
if(subset.size() > 0){
//start from the next element of subset[subset.size()-1]
start = find(nums.begin(), nums.end(), subset[subset.size()-1]) - nums.begin() + 1;
}
// for(int e : nums){
// for(int i = subset.size(); i < nums.size(); i++){
for(int i = start; i < nums.size(); i++){
int e = nums[i];
// cout << start << " " << i << endl;
subset.push_back(e);
backtrack(ans, subset, nums, k);
subset.pop_back();
}
}
};
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> ans;
vector<int> subset;
//from empty set to itself
for(int k = 0; k <= nums.size(); k++){
backtrack(ans, subset, nums, k);
}
return ans;
}
};
//Approach 2: Backtracking
//time: O(N*2^N), space: O(N*2^N)
//https://leetcode.com/problems/permutations/discuss/18239/A-general-approach-to-backtracking-questions-in-Java-(Subsets-Permutations-Combination-Sum-Palindrome-Partioning)
//Runtime: 4 ms, faster than 97.95% of C++ online submissions for Subsets.
//Memory Usage: 8.2 MB, less than 100.00% of C++ online submissions for Subsets.
class Solution {
public:
void backtrack(vector<vector<int>>& ans, vector<int>& subset, vector<int>& nums, int start){
ans.push_back(subset);
for(int i = start; i < nums.size(); i++){
subset.push_back(nums[i]);
backtrack(ans, subset, nums, i+1);
subset.pop_back();
}
};
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> ans;
vector<int> subset;
backtrack(ans, subset, nums, 0);
return ans;
}
};
//Approach 1: Recursion
//time: O(N*2^N), space: O(N*2^N)
//Runtime: 4 ms, faster than 97.95% of C++ online submissions for Subsets.
//Memory Usage: 8.3 MB, less than 100.00% of C++ online submissions for Subsets.
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> ans = {vector<int>()};
for(int num : nums){
// cout << "num: " << num << endl;
int ans_size = ans.size();
// for(vector<int>& subset : ans){
for(int i = 0; i < ans_size; i++){
vector<int> cur = ans[i];
// cout << "subset size: " << cur.size() << endl;
cur.push_back(num);
ans.push_back(cur);
// cout << "ans size: " << ans.size() << endl;
}
}
return ans;
}
};
//Approach 3: Lexicographic (Binary Sorted) Subsets
//time: O(N*2^N), space: O(N*2^N)
//Runtime: 8 ms, faster than 53.38% of C++ online submissions for Subsets.
//Memory Usage: 8.4 MB, less than 100.00% of C++ online submissions for Subsets.
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
//its binary representation has length (n+1)
int N = nums.size();
int nthBit = 1 << N;
vector<vector<int>> ans;
// cout << N << " " << nthBit << endl;
//(1 << n) equals to (int)pow(2, n)
for(int i = 0; i < nthBit; i++){
const size_t bitcount = sizeof(nthBit)*8;
string binary = bitset<bitcount>(i | nthBit).to_string();
//the first (bitcount -N) bit is just used for keeping the leading 0, so here ignore it
//select the last N bits
string bitmask = binary.substr(bitcount-N);
// cout << i << " " << bitmask << endl;
vector<int> subset;
for(int j = 0; j < N; j++){
if(bitmask[j] == '1'){
subset.push_back(nums[j]);
}
}
ans.push_back(subset);
}
return ans;
}
};