From be8ea7fc2bb0477a98e4831ed9377ca738510d4f Mon Sep 17 00:00:00 2001 From: guillaumebaquiast Date: Wed, 26 Jul 2023 20:14:21 +0100 Subject: [PATCH 1/2] Add docstrings in numpy --- keras_core/ops/numpy.py | 300 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 300 insertions(+) diff --git a/keras_core/ops/numpy.py b/keras_core/ops/numpy.py index 3272122f2..5d98bee1c 100644 --- a/keras_core/ops/numpy.py +++ b/keras_core/ops/numpy.py @@ -586,6 +586,38 @@ def append( x2, axis=None, ): + """Append tensor `x2` to the end of tensor `x1`. + + Args: + x1: First input tensor. + x2: Second input tensor. + axis: Axis along which tensor `x2` is appended to tensor `x1`. + If `None`, both tensors are flattened before use. + + Returns: + A tensor with the values of `x2` appended to `x1`. + + Examples: + + >>> x1 = keras_core.ops.convert_to_tensor([1, 2, 3]) + >>> x2 = keras_core.ops.convert_to_tensor([[4, 5, 6], [7, 8, 9]]) + >>> keras_core.ops.append(x1, x2) + array([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int32) + + When `axis` is specified, `x1` and `x2` must have compatible shapes. + >>> x1 = keras_core.ops.convert_to_tensor([[1, 2, 3], [4, 5, 6]]) + >>> x2 = keras_core.ops.convert_to_tensor([[7, 8, 9]]) + >>> keras_core.ops.append(x1, x2, axis=0) + array([[1, 2, 3], + [4, 5, 6], + [7, 8, 9]], dtype=int32) + >>> x3 = keras_core.ops.convert_to_tensor([7, 8, 9]) + >>> keras_core.ops.append(x1, x3, axis=0) + Traceback (most recent call last): + ... + TypeError: Cannot concatenate arrays with different numbers of + dimensions: got (2, 3), (3,). + """ if any_symbolic_tensors((x1, x2)): return Append(axis=axis).symbolic_call(x1, x2) return backend.numpy.append(x1, x2, axis=axis) @@ -604,6 +636,51 @@ def compute_output_spec(self, start, stop=None, step=1, dtype=None): @keras_core_export(["keras_core.ops.arange", "keras_core.ops.numpy.arange"]) def arange(start, stop=None, step=1, dtype=None): + """Return evenly spaced values within a given interval. + + `arange` can be called with a varying number of positional arguments: + * `arange(stop)`: Values are generated within the half-open interval + `[0, stop)` (in other words, the interval including start but excluding + stop). + * `arange(start, stop)`: Values are generated within the half-open interval + `[start, stop)`. + * `arange(start, stop, step)`: Values are generated within the half-open + interval `[start, stop)`, with spacing between values given by step. + + Args: + start: Integer or real, representing the start of the interval. The + interval includes this value. + stop: Integer or real, representing the end of the interval. The + interval does not include this value, except in some cases where + `step` is not an integer and floating point round-off affects the + lenght of `out`. Defaults to `None`. + step: Integer or real, represent the spacing between values. For any + output `out`, this is the distance between two adjacent values, + `out[i+1] - out[i]`. The default step size is 1. If `step` is + specified as a position argument, `start` must also be given. + dtype: The type of the output array. If `dtype` is not given, infer the + data type from the other input arguments. + + Returns: + Tensor of evenly spaced values. + For floating point arguments, the length of the result is + `ceil((stop - start)/step)`. Because of floating point overflow, this + rule may result in the last element of out being greater than stop. + + Examples: + + >>> keras_core.ops.arange(3) + array([0, 1, 2], dtype=int32) + + >>> keras_core.ops.arange(3.0) + array([0., 1., 2.], dtype=float32) + + >>> keras_core.ops.arange(3, 7) + array([3, 4, 5, 6], dtype=int32) + + >>> keras_core.ops.arange(3, 7, 2) + array([3, 5], dtype=int32) + """ return backend.numpy.arange(start, stop, step=step, dtype=dtype) @@ -617,6 +694,20 @@ def compute_output_spec(self, x): @keras_core_export(["keras_core.ops.arccos", "keras_core.ops.numpy.arccos"]) def arccos(x): + """Trigonometric inverse cosine, element-wise. The inverse of `cos` so that, + if `y = cos(x)`, then `x = arccos(y)`. + + Arg: + x: Input tensor. + + Returns: + Tensor of the angle of the ray intersecting the unit circle at the given + x-coordinate in radians [0, pi]. + + Example: + >>> x = keras_core.ops.convert_to_tensor([1, -1]) + array([0. , 3.1415927], dtype=float32) + """ if any_symbolic_tensors((x,)): return Arccos().symbolic_call(x) return backend.numpy.arccos(x) @@ -632,6 +723,20 @@ def compute_output_spec(self, x): @keras_core_export(["keras_core.ops.arcsin", "keras_core.ops.numpy.arcsin"]) def arcsin(x): + """Inverse sine, element-wise. + + Arg: + x: Input tensor. + + Returns: + Tensor of the inverse sine of each element in `x`, in radians and in + the closed interval `[-pi/2, pi/2]`. + + Example: + >>> x = keras_core.ops.convert_to_tensor([1, -1, 0]) + >>> keras_core.ops.arcsin(x) + array([ 1.5707964, -1.5707964, 0. ], dtype=float32) + """ if any_symbolic_tensors((x,)): return Arcsin().symbolic_call(x) return backend.numpy.arcsin(x) @@ -647,6 +752,20 @@ def compute_output_spec(self, x): @keras_core_export(["keras_core.ops.arctan", "keras_core.ops.numpy.arctan"]) def arctan(x): + """Trigonometric inverse tangent, element-wise. + + Arg: + x: Input tensor. + + Returns: + Tensor of the inverse tangent of each element in `x`, in the interval + `[-pi/2, pi/2]`. + + Example: + >>> x = keras_core.ops.convert_to_tensor([0, 1]) + >>> keras_core.ops.arctan(x) + array([0. , 0.7853982], dtype=float32) + """ if any_symbolic_tensors((x,)): return Arctan().symbolic_call(x) return backend.numpy.arctan(x) @@ -665,6 +784,43 @@ def compute_output_spec(self, x1, x2): @keras_core_export(["keras_core.ops.arctan2", "keras_core.ops.numpy.arctan2"]) def arctan2(x1, x2): + """Element-wise arc tangent of `x1/x2` choosing the quadrant correctly. + + The quadrant (i.e., branch) is chosen so that `arctan2(x1, x2)` is the + signed angle in radians between the ray ending at the origin and passing + through the point (1,0), and the ray ending at the origin and passing + through the point (x2, x1). (Note the role reversal: the “y-coordinate” is + the first function parameter, the “x-coordinate” is the second.) By IEEE + convention, this function is defined for x2 = +/-0 and for either or both + of x1 and x2 = +/-inf. + + Args: + x1: First input tensor. + x2: Second input tensor. + + Returns: + Tensor of angles in radians, in the range `[-pi, pi]`. + + Examples: + Consider four points in different quadrants: + >>> x = keras_core.ops.convert_to_tensor([-1, +1, +1, -1]) + >>> y = keras_core.ops.convert_to_tensor([-1, -1, +1, +1]) + >>> keras_core.ops.arctan2(y, x) * 180 / numpy.pi + array([-135., -45., 45., 135.], dtype=float32) + + Note the order of the parameters. `arctan2` is defined also when x2=0 and + at several other points, obtaining values in the range `[-pi, pi]`: + >>> keras_core.ops.arctan2( + ... keras_core.ops.array([1., -1.]), + ... keras_core.ops.array([0., 0.]), + ... ) + array([ 1.5707964, -1.5707964], dtype=float32) + >>> keras_core.ops.arctan2( + ... keras_core.ops.array([0., 0., numpy.inf]), + ... keras_core.ops.array([+0., -0., numpy.inf]), + ... ) + array([0. , 3.1415925, 0.7853982], dtype=float32) + """ if any_symbolic_tensors((x1, x2)): return Arctan2().symbolic_call(x1, x2) return backend.numpy.arctan2(x1, x2) @@ -688,6 +844,29 @@ def compute_output_spec(self, x): @keras_core_export(["keras_core.ops.argmax", "keras_core.ops.numpy.argmax"]) def argmax(x, axis=None): + """Returns the indices of the maximum values along an axis. + + Args: + x: Input tensor. + axis: By default, the index is into the flattened tensor, otherwise + along the specified axis. + + Returns: + Tensor of indices. It has the same shape as `x`, with the dimension + along `axis` removed. + + Example: + >>> x = keras_core.ops.arange(6).reshape(2, 3) + 10 + >>> x + array([[10, 11, 12], + [13, 14, 15]], dtype=int32) + >>> keras_core.ops.argmax(x) + array(5, dtype=int32) + >>> keras_core.ops.argmax(x, axis=0) + array([1, 1, 1], dtype=int32) + >>> keras_core.ops.argmax(x, axis=1) + array([2, 2], dtype=int32) + """ if any_symbolic_tensors((x,)): return Argmax(axis=axis).symbolic_call(x) return backend.numpy.argmax(x, axis=axis) @@ -711,6 +890,29 @@ def compute_output_spec(self, x): @keras_core_export(["keras_core.ops.argmin", "keras_core.ops.numpy.argmin"]) def argmin(x, axis=None): + """Returns the indices of the minium values along an axis. + + Args: + x: Input tensor. + axis: By default, the index is into the flattened tensor, otherwise + along the specified axis. + + Returns: + Tensor of indices. It has the same shape as `x`, with the dimension + along `axis` removed. + + Example: + >>> x = keras_core.ops.arange(6).reshape(2, 3) + 10 + >>> x + array([[10, 11, 12], + [13, 14, 15]], dtype=int32) + >>> keras_core.ops.argmin(x) + array(0, dtype=int32) + >>> keras_core.ops.argmin(x, axis=0) + array([0, 0, 0], dtype=int32) + >>> keras_core.ops.argmin(x, axis=1) + array([0, 0], dtype=int32) + """ if any_symbolic_tensors((x,)): return Argmin(axis=axis).symbolic_call(x) return backend.numpy.argmin(x, axis=axis) @@ -732,6 +934,37 @@ def compute_output_spec(self, x): @keras_core_export(["keras_core.ops.argsort", "keras_core.ops.numpy.argsort"]) def argsort(x, axis=-1): + """Returns the indices that would sort an tensor. + + Args: + x: Input tensor. + axis: Axis along which to sort. Default is `-1` (the last axis). If + `None`, the flattened tensor is used. + + Returns: + Tensor of indices that sort `x` along the specified `axis`. + + Examples: + One dimensional array: + >>> x = keras_core.ops.array([3, 1, 2]) + >>> keras_core.ops.argsort(x) + array([1, 2, 0], dtype=int32) + + Two-dimensional array: + >>> x = keras_core.ops.array([[0, 3], [3, 2], [4, 5]]) + >>> x + array([[0, 3], + [3, 2], + [4, 5]], dtype=int32) + >>> keras_core.ops.argsort(x, axis=0) + array([[0, 1], + [1, 0], + [2, 2]], dtype=int32) + >>> keras_core.ops.argsort(x, axis=1) + array([[0, 1], + [1, 0], + [0, 1]], dtype=int32) + """ if any_symbolic_tensors((x,)): return Argsort(axis=axis).symbolic_call(x) return backend.numpy.argsort(x, axis=axis) @@ -747,6 +980,22 @@ def compute_output_spec(self, x, dtype=None): @keras_core_export(["keras_core.ops.array", "keras_core.ops.numpy.array"]) def array(x, dtype=None): + """Create a tensor. + + Args: + x: Input tensor. + dtype: The desired data-type for the tensor. + + Returns: + A tensor. + + Examples: + >>> keras_core.ops.array([1, 2, 3]) + array([1, 2, 3], dtype=int32) + + >>> keras_core.ops.array([1, 2, 3], dtype="float32") + array([1., 2., 3.], dtype=float32) + """ if any_symbolic_tensors((x,)): return Array().symbolic_call(x, dtype=dtype) return backend.numpy.array(x, dtype=dtype) @@ -800,6 +1049,57 @@ def compute_output_spec(self, x, weights=None): @keras_core_export(["keras_core.ops.average", "keras_core.ops.numpy.average"]) def average(x, axis=None, weights=None): + """Compute the weighted average along the specified axis. + + Args: + x: Input tensor. + axis: Integer along which to average `x`. The default, `axis=None`, + will average over all of the elements of the input tendor. If axis + is negative it counts from the last to the first axis. + weights: Tensor of wieghts associated with the values in `x`. Each + value in `x` contributes to the average according to its + associated weight. The weights array can either be 1-D (in which + case its length must be the size of a along the given axis) or of + the same shape as `x`. If `weights=None` (default), then all data + in `x` are assumed to have a weight equal to one. + + The 1-D calculation is: `avg = sum(a * weights) / sum(weights)`. + The only constraint on weights is that `sum(weights)` must not be 0. + + Returns: + Return the average along the specified axis. + + Examples: + >>> data = keras_core.ops.arange(1, 5) + >>> data + array([1, 2, 3, 4], dtype=int32) + >>> keras_core.ops.average(data) + array(2.5, dtype=float32) + >>> keras_core.ops.average( + ... keras_core.ops.arange(1, 11), + ... weights=keras_core.ops.arange(10, 0, -1) + ... ) + array(4., dtype=float32) + + >>> data = keras_core.ops.arange(6).reshape((3, 2)) + >>> data + array([[0, 1], + [2, 3], + [4, 5]], dtype=int32) + >>> keras_core.ops.average( + ... data, + ... axis=1, + ... weights=keras_core.ops.array([1./4, 3./4]) + ... ) + array([0.75, 2.75, 4.75], dtype=float32) + >>> keras_core.ops.average( + ... data, + ... weights=keras_core.ops.array([1./4, 3./4]) + ... ) + Traceback (most recent call last): + ... + ValueError: Axis must be specified when shapes of a and weights differ. + """ if any_symbolic_tensors((x,)): return Average(axis=axis).symbolic_call(x, weights=weights) return backend.numpy.average(x, weights=weights, axis=axis) From 05c3a3ae266a8bf22adfb35e4b4deadaee75b078 Mon Sep 17 00:00:00 2001 From: guillaumebaquiast Date: Wed, 26 Jul 2023 20:33:41 +0100 Subject: [PATCH 2/2] passed review comments --- keras_core/ops/numpy.py | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/keras_core/ops/numpy.py b/keras_core/ops/numpy.py index 5d98bee1c..820357f49 100644 --- a/keras_core/ops/numpy.py +++ b/keras_core/ops/numpy.py @@ -706,7 +706,7 @@ def arccos(x): Example: >>> x = keras_core.ops.convert_to_tensor([1, -1]) - array([0. , 3.1415927], dtype=float32) + array([0., 3.1415927], dtype=float32) """ if any_symbolic_tensors((x,)): return Arccos().symbolic_call(x) @@ -735,7 +735,7 @@ def arcsin(x): Example: >>> x = keras_core.ops.convert_to_tensor([1, -1, 0]) >>> keras_core.ops.arcsin(x) - array([ 1.5707964, -1.5707964, 0. ], dtype=float32) + array([ 1.5707964, -1.5707964, 0.], dtype=float32) """ if any_symbolic_tensors((x,)): return Arcsin().symbolic_call(x) @@ -764,7 +764,7 @@ def arctan(x): Example: >>> x = keras_core.ops.convert_to_tensor([0, 1]) >>> keras_core.ops.arctan(x) - array([0. , 0.7853982], dtype=float32) + array([0., 0.7853982], dtype=float32) """ if any_symbolic_tensors((x,)): return Arctan().symbolic_call(x) @@ -788,11 +788,11 @@ def arctan2(x1, x2): The quadrant (i.e., branch) is chosen so that `arctan2(x1, x2)` is the signed angle in radians between the ray ending at the origin and passing - through the point (1,0), and the ray ending at the origin and passing - through the point (x2, x1). (Note the role reversal: the “y-coordinate” is - the first function parameter, the “x-coordinate” is the second.) By IEEE - convention, this function is defined for x2 = +/-0 and for either or both - of x1 and x2 = +/-inf. + through the point `(1, 0)`, and the ray ending at the origin and passing + through the point `(x2, x1)`. (Note the role reversal: the "y-coordinate" + is the first function parameter, the "x-coordinate" is the second.) By IEEE + convention, this function is defined for `x2 = +/-0` and for either or both + of `x1` and `x2` `= +/-inf`. Args: x1: First input tensor. @@ -806,7 +806,7 @@ def arctan2(x1, x2): >>> x = keras_core.ops.convert_to_tensor([-1, +1, +1, -1]) >>> y = keras_core.ops.convert_to_tensor([-1, -1, +1, +1]) >>> keras_core.ops.arctan2(y, x) * 180 / numpy.pi - array([-135., -45., 45., 135.], dtype=float32) + array([-135., -45., 45., 135.], dtype=float32) Note the order of the parameters. `arctan2` is defined also when x2=0 and at several other points, obtaining values in the range `[-pi, pi]`: @@ -819,7 +819,7 @@ def arctan2(x1, x2): ... keras_core.ops.array([0., 0., numpy.inf]), ... keras_core.ops.array([+0., -0., numpy.inf]), ... ) - array([0. , 3.1415925, 0.7853982], dtype=float32) + array([0., 3.1415925, 0.7853982], dtype=float32) """ if any_symbolic_tensors((x1, x2)): return Arctan2().symbolic_call(x1, x2)