-
Notifications
You must be signed in to change notification settings - Fork 109
/
Copy pathwordninja.py
91 lines (70 loc) · 2.83 KB
/
wordninja.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import gzip, os, re
from math import log
__version__ = '2.0.0'
# I did not author this code, only tweaked it from:
# http://stackoverflow.com/a/11642687/2449774
# Thanks Generic Human!
# Modifications by Scott Randal (Genesys)
#
# 1. Preserve original character case after splitting
# 2. Avoid splitting every post-digit character in a mixed string (e.g. 'win32intel')
# 3. Avoid splitting digit sequences
# 4. Handle input containing apostrophes (for possessives and contractions)
#
# Wordlist changes:
# Change 2 required adding single digits to the wordlist
# Change 4 required the following wordlist additions:
# 's
# '
# <list of contractions>
class LanguageModel(object):
def __init__(self, word_file):
# Build a cost dictionary, assuming Zipf's law and cost = -math.log(probability).
with gzip.open(word_file) as f:
words = f.read().decode().split()
self._wordcost = dict((k, log((i+1)*log(len(words)))) for i,k in enumerate(words))
self._maxword = max(len(x) for x in words)
def split(self, s):
"""Uses dynamic programming to infer the location of spaces in a string without spaces."""
punctuations = _SPLIT_RE.findall(s)
texts = _SPLIT_RE.split(s)
assert len(punctuations) + 1 == len(texts)
new_texts = [self._split(x) for x in texts]
for i, punctuation in enumerate(punctuations):
new_texts.insert(2*i+1, punctuation)
return [item for sublist in new_texts for item in sublist]
def _split(self, s):
# Find the best match for the i first characters, assuming cost has
# been built for the i-1 first characters.
# Returns a pair (match_cost, match_length).
def best_match(i):
candidates = enumerate(reversed(cost[max(0, i-self._maxword):i]))
return min((c + self._wordcost.get(s[i-k-1:i].lower(), 9e999), k+1) for k,c in candidates)
# Build the cost array.
cost = [0]
for i in range(1,len(s)+1):
c,k = best_match(i)
cost.append(c)
# Backtrack to recover the minimal-cost string.
out = []
i = len(s)
while i>0:
c,k = best_match(i)
assert c == cost[i]
# Apostrophe and digit handling (added by Genesys)
newToken = True
if not s[i-k:i] == "'": # ignore a lone apostrophe
if len(out) > 0:
# re-attach split 's and split digits
if out[-1] == "'s" or (s[i-1].isdigit() and out[-1][0].isdigit()): # digit followed by digit
out[-1] = s[i-k:i] + out[-1] # combine current token with previous token
newToken = False
# (End of Genesys addition)
if newToken:
out.append(s[i-k:i])
i -= k
return reversed(out)
DEFAULT_LANGUAGE_MODEL = LanguageModel(os.path.join(os.path.dirname(os.path.abspath(__file__)),'wordninja','wordninja_words.txt.gz'))
_SPLIT_RE = re.compile(r"\s+")
def split(s):
return DEFAULT_LANGUAGE_MODEL.split(s)