-
Notifications
You must be signed in to change notification settings - Fork 0
/
D course 1.Rmd
251 lines (205 loc) · 8.35 KB
/
D course 1.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
---
title: "GY7702 2021/22 Assignment 1"
author: "219047470"
date: "7/30/2022"
output: pdf_document
---
# Libraries
```{r, message=FALSE, warning=FALSE}
library(car)
library(dplyr)
library(tidyverse)
library(magrittr)
library(GGally)
library(fmsb)
library(ggplot2)
library(plotly)
```
# Part 1: Loading Data into R
```{r}
link <- 'C:/Users/khalsz/Downloads/data5/data6/'
setwd(link)
data1 <- read.csv('covid19_vaccinations_2020-12-06_2021-10-02_long.csv')
data2 <- read.csv('ukpopestimatesmid2020on2021geography.csv')
laddata1 <- data1 %>%
dplyr::filter(area_name == c('Bolton', 'Waltham Forest', 'Halton'))
```
```{r}
#Checking NA
laddata1[is.na(laddata1)]
```
Data contains zero NA
```{r}
#Converting dataframe to wide format
widelad <- laddata1 %>% reshape(timevar = 'metric', v.names = 'value',
idvar = c('date_reported', 'area_name'), direction = 'wide')
#Replacing all NA values with Zero
widelad[is.na(widelad)] <- 0
#Joining data
joinedlad <- widelad %>% dplyr::left_join(
data2, by = c('area_code' = 'ï..Code')
)
# Removing prefix 'value' from columns
new_colnames <- gsub("^value.", "", colnames(joinedlad))
names(joinedlad) <- new_colnames
#Joining data
joinedlad <- joinedlad %>%
dplyr::select(-Name) %>%
dplyr::rename( Population = All.ages )
#Replacing coma and converting variables to numeric
joinedlad$Population <- as.numeric( gsub(',', '', joinedlad$Population))
#Converting variable 'date_reported' to data format
joinedlad$date_reported <- as.Date(joinedlad$date_reported)
```
```{r}
#Creating new variable 'Perc_New_Cases'
joinedlad_w_p <- joinedlad %>%
dplyr::mutate(Perc_New_cases = round( (new_cases/Population) *100, 3) )
joinedlad_w_p$Perc_New_cases <- as.character(paste0(joinedlad_w_p$Perc_New_cases, '%'))
```
# Part 2: 2.1
```{r}
joinedlad_w_p[order(joinedlad_w_p$date_reported),] %>%
dplyr::select(date_reported, area_name, new_cases, Perc_New_cases) %>%
dplyr::group_by(area_name) %>%
head(3) %>%
knitr::kable()
```
# Part 2: 2.2
```{r}
widen_joinlad <- joinedlad_w_p %>%
dplyr::select(date_reported, area_name, new_cases) %>%
dplyr::arrange( date_reported) %>%
dplyr::group_by(area_name) %>%
dplyr::mutate(pre = dplyr::lag(new_cases, 7, default = NA)) %>%
dplyr::mutate(pre_pec = ((new_cases - pre)/pre)*100) %>%
dplyr::ungroup() %>%
dplyr::select(date_reported, area_name, pre_pec) %>%
tidyr::pivot_wider(names_from = area_name, values_from = pre_pec) %>%
dplyr::filter(dplyr::between(date_reported, as.Date('2021-07-01'), as.Date('2021-07-31')))
widen_joinlad <- data.frame(widen_joinlad)
widen_joinlad[widen_joinlad == Inf] <- 0
widen_joinlad[is.na(widen_joinlad)] <- 0
widen_joinlad <- data.frame( lapply(widen_joinlad, function(x) round(x, 2)))
for (i in 2:length(names(widen_joinlad))){
widen_joinlad[,i] = as.character(paste0(widen_joinlad[,i], '%'))
}
widen_joinlad %>%
knitr::kable()
```
# Part 2: 2.3
## Building function for Max of each month
```{r}
ave_month <- function(LAD){
high_M <- joinedlad %>%
dplyr::filter(area_name == LAD) %>%
dplyr::select(date_reported, new_first_vaccine_dose) %>%
dplyr::slice_max(new_first_vaccine_dose) %>%
dplyr::select(date_reported) %>%
dplyr::pull(1,1) %>%
lubridate::month()
joinedlad %>%
dplyr::filter(area_name == LAD) %>%
dplyr::filter(lubridate::month(date_reported) == high_M) %>%
dplyr::mutate(week_no =lubridate::week(date_reported) ) %>%
dplyr::group_by(week_no) %>%
dplyr::select(new_first_vaccine_dose, date_reported) %>%
dplyr::mutate(Weeks = as.character(paste(first(date_reported), 'to', last(date_reported)))) %>%
dplyr::ungroup() %>%
dplyr::group_by(Weeks) %>%
dplyr::summarise( Average_number_of_first_doses = mean(new_first_vaccine_dose)) %>%
dplyr::select(Weeks, Average_number_of_first_doses) %>%
knitr::kable()
}
ave_month('Halton')
ave_month('Waltham Forest')
ave_month('Bolton')
```
#Part 2: 2.3 average daily new first vaccination per week
```{r}
high_M2 <- joinedlad %>%
dplyr::select(date_reported, new_first_vaccine_dose) %>%
dplyr::slice_max(new_first_vaccine_dose) %>%
dplyr::select(date_reported) %>%
dplyr::pull(1,1) %>%
lubridate::month()
joinedlad %>%
dplyr::filter(lubridate::month(date_reported) == high_M2) %>%
dplyr::mutate(week_no =lubridate::week(date_reported) ) %>%
dplyr::group_by(week_no) %>%
dplyr::select(new_first_vaccine_dose, date_reported) %>%
dplyr::mutate(Weeks = as.character(paste(first(date_reported), 'to', last(date_reported)))) %>%
dplyr::ungroup() %>%
dplyr::group_by(Weeks) %>%
dplyr::summarise( Average_number_of_first_doses = mean(new_first_vaccine_dose)) %>%
dplyr::select(Weeks, Average_number_of_first_doses) %>%
knitr::kable()
```
# Part 3
```{r}
boltcomp <- function(x){
data1 %>%
filter(area_name == 'Bolton') %>%
filter(metric == x) %>%
dplyr::mutate(Month = lubridate::month(date_reported)) %>%
dplyr::group_by(Month) %>%
dplyr::summarise(mon_max = max(value))
}
englcomp <- function(x){
data1 %>%
filter(metric == x) %>%
dplyr::mutate(Month = lubridate::month(date_reported)) %>%
dplyr::group_by(Month) %>%
dplyr::summarise(mon_max = max(value))
}
boltcomp('cumulative_cases')
englcomp('cumulative_cases')
boltcomp('new_cases')
englcomp('new_cases')
boltcomp('new_first_vaccine_dose')
englcomp('new_first_vaccine_dose')
boltcomp('new_second_vaccine_dose')
englcomp('new_second_vaccine_dose')
```
```{r}
#New Cases Comparison Chart
plot(englcomp('new_cases'), type = 'l', col = 'red',
main = 'Monthly Maximum New Cases Comparison', xlab= 'Month',
ylab = 'New Cases', ylim=c(1, 1700))
lines(boltcomp('new_cases'), type = "l", col = "green")
legend("topright",
legend = c("Bolton", "England"),
col = c("green", "red"),
lty = 1)
```
The chart shows that England had its highest maximum new cases in January while Bolton had its highest maximum new cases in May. However, both England and Bolton had their lowest maximum new cases on April. This shows that their is high chances that new cases were low across the country in April. Also, England and Bolton had the same new cases trend from January to April.
```{r}
#First Vaccine dose Comparison
plot(englcomp('new_first_vaccine_dose'), type = 'l', col = 'red',
main = 'Monthly Maximum First Vaccine Comparison',
xlab= 'Month', ylab = 'First Vaccine', ylim = c(1, 12000))
lines(boltcomp('new_first_vaccine_dose'), type = "l", col = "green")
legend("topright",
legend = c("Bolton", "England"),
col = c("green", "red"),
lty = 1)
```
Unlike England which had its highest maximum first vaccine in March, Bolton had its highest maximum
first vaccine in May. WHile England had it lowest maximum first vaccine in September, Bolton had its own in October. Both England and Bolton had similar first vaccine trend from October to December.
```{r}
plot(englcomp('new_second_vaccine_dose'), type = 'l', col = 'red',
main = 'Monthly Maximum Second Vaccine Comparison',
xlab= 'Month', ylab = 'Second Vaccine', ylim = c(1,11500))
lines(boltcomp('new_second_vaccine_dose'), type = "l", col = "green")
legend("topright",
legend = c("Bolton", "England"),
col = c("green", "red"),
lty = 1)
```
Both England and Bolton displayed similar Maximum second vaccine trend from January to APril. However, England reached its peak in May while Bolton peaked in April. A fall in trend was also noticed in both from May to December and both reach their lowest maximum second vaccine in December.
# Part 4: 4.0
Based on the information offered, it is evident that the data is a UK covid-19 data from 2020-12-06 to
2021-10-02, containing information about number of new and cummulative covid cases and number of first
and second vaccins collected by people in different Local Authority District (LAD) of England. For the
purpose of analysis, three LAD: Bolton, Waltham Forest and Halton were assigned to me.
To efficiently perform this analysis, I used libraries like dplyr, tidyverse and pastec, among others.