-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathevaluate_regression.py
285 lines (236 loc) · 11.4 KB
/
evaluate_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import argparse
import copy
import logging
import numpy as np
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
from torch import optim
from torch.nn import functional as F
import datasets.task_sampler as ts
import model.modelfactory as mf
from experiment.experiment import experiment
from model.meta_learner import MetaLearnerRegression
#
logger = logging.getLogger('experiment')
def construct_set(iterators, sampler, steps=2, iid=False):
'''
:param iterators: List of iterators to sample different tasks
:param sampler: object that samples data from the iterator and appends task ids
:param steps: no of batches per task
:param iid:
:return:
'''
x_spt = []
y_spt = []
for id, it1 in enumerate(iterators):
for inner in range(steps):
x, y = sampler.sample_batch(it1, id, 32)
x_spt.append(x)
y_spt.append(y)
x_qry = []
y_qry = []
for id, it1 in enumerate(iterators):
x, y = sampler.sample_batch(it1, id, 32)
x_qry.append(x)
y_qry.append(y)
x_qry = torch.stack([torch.cat(x_qry)])
y_qry = torch.stack([torch.cat(y_qry)])
rand_indices = list(range(len(x_spt)))
np.random.shuffle(rand_indices)
if iid:
x_spt_new = []
y_spt_new = []
for a in rand_indices:
x_spt_new.append(x_spt[a])
y_spt_new.append(y_spt[a])
x_spt = x_spt_new
y_spt = y_spt_new
x_spt = torch.stack(x_spt)
y_spt = torch.stack(y_spt)
return x_spt, y_spt, x_qry, y_qry
def main(args):
# Seed random number generators
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
my_experiment = experiment(args.name, args, "../results/", commit_changes=args.commit)
writer = SummaryWriter(my_experiment.path + "tensorboard")
print(args)
# Initalize tasks; we sample 1000 tasks for evaluation
tasks = list(range(1000))
logger = logging.getLogger('experiment')
sampler = ts.SamplerFactory.get_sampler("Sin", tasks, None, None, capacity=args.capacity + 1)
config = mf.ModelFactory.get_model("na", "Sin", in_channels=args.capacity + 1, num_actions=args.tasks)
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
# Load the model
maml = MetaLearnerRegression(args, config).to(device)
maml.net = torch.load(args.model, map_location='cpu').to(device)
for name, param in maml.named_parameters():
param.learn = True
for name, param in maml.net.named_parameters():
param.learn = True
tmp = filter(lambda x: x.requires_grad, maml.parameters())
num = sum(map(lambda x: np.prod(x.shape), tmp))
logger.info(maml)
logger.info('Total trainable tensors: %d', num)
##### Setting up parameters for freezing RLN layers
#### Also resets TLN layers with random initialization if args.reset is true
frozen_layers = []
for temp in range(args.rln * 2):
frozen_layers.append("net.vars." + str(temp))
for name, param in maml.named_parameters():
logger.info(name)
if name in frozen_layers:
logger.info("Freeezing name %s", str(name))
param.learn = False
logger.info(str(param.requires_grad))
else:
if args.reset:
w = nn.Parameter(torch.ones_like(param))
if len(w.shape) > 1:
logger.info("Resseting layer %s", str(name))
torch.nn.init.kaiming_normal_(w)
else:
w = nn.Parameter(torch.zeros_like(param))
param.data = w
param.learn = True
for name, param in maml.net.named_parameters():
logger.info(name)
if name in frozen_layers:
logger.info("Freeezing name %s", str(name))
param.learn = False
logger.info(str(param.requires_grad))
correct = 0
counter = 0
for name, _ in maml.net.named_parameters():
# logger.info("LRs of layer %s = %s", str(name), str(torch.mean(maml.lrs[counter])))
counter += 1
for lrs in [0.003]:
loss_vector = np.zeros(args.tasks)
loss_vector_results = []
lr_results = {}
incremental_results = {}
lr_results[lrs] = []
runs = args.runs
for temp in range(0, runs):
loss_vector = np.zeros(args.tasks)
t1 = np.random.choice(tasks, args.tasks, replace=False)
print(t1)
iterators = []
for t in t1:
iterators.append(sampler.sample_task([t]))
x_spt, y_spt, x_qry, y_qry = construct_set(iterators, sampler, steps=args.update_step, iid=args.iid)
if torch.cuda.is_available():
x_spt, y_spt, x_qry, y_qry = x_spt.cuda(), y_spt.cuda(), x_qry.cuda(), y_qry.cuda()
net = copy.deepcopy(maml.net)
net = net.to(device)
for params_old, params_new in zip(maml.net.parameters(), net.parameters()):
params_new.learn = params_old.learn
list_of_params = list(filter(lambda x: x.learn, net.parameters()))
optimizer = optim.SGD(list_of_params, lr=lrs)
counter = 0
x_spt_test, y_spt_test, x_qry_test, y_qry_test = construct_set(iterators, sampler, steps=300)
if torch.cuda.is_available():
x_spt_test, y_spt_test, x_qry_test, y_qry_test = x_spt_test.cuda(), y_spt_test.cuda(), x_qry_test.cuda(), y_qry_test.cuda()
for k in range(len(x_spt)):
if k % args.update_step == 0 and k > 0:
counter += 1
loss_temp = 0
if not counter in incremental_results:
incremental_results[counter] = []
with torch.no_grad():
for update_upto in range(0, counter * 300):
logits = net(x_spt_test[update_upto], vars=None, bn_training=False)
logits_select = []
for no, val in enumerate(y_spt_test[update_upto, :, 1].long()):
logits_select.append(logits[no, val])
logits = torch.stack(logits_select).unsqueeze(1)
loss_temp += F.mse_loss(logits, y_spt_test[update_upto, :, 0].unsqueeze(1))
loss_temp = loss_temp / (counter * 300)
incremental_results[counter].append(loss_temp.item())
my_experiment.results["incremental"] = incremental_results
logits = net(x_spt[k], None, bn_training=False)
logits_select = []
for no, val in enumerate(y_spt[k, :, 1].long()):
logits_select.append(logits[no, val])
logits = torch.stack(logits_select).unsqueeze(1)
loss = F.mse_loss(logits, y_spt[k, :, 0].unsqueeze(1))
optimizer.zero_grad()
loss.backward()
optimizer.step()
counter += 1
loss_temp = 0
if not counter in incremental_results:
incremental_results[counter] = []
with torch.no_grad():
for update_upto in range(0, counter * 300):
logits = net(x_spt_test[update_upto], vars=None, bn_training=False)
logits_select = []
for no, val in enumerate(y_spt_test[update_upto, :, 1].long()):
logits_select.append(logits[no, val])
logits = torch.stack(logits_select).unsqueeze(1)
loss_temp += F.mse_loss(logits, y_spt_test[update_upto, :, 0].unsqueeze(1))
# lr_results[lrs].append(loss_q.item())
loss_temp = loss_temp / (counter * 300)
incremental_results[counter].append(loss_temp.item())
my_experiment.results["incremental"] = incremental_results
#
x_spt, y_spt, x_qry, y_qry = x_spt_test, y_spt_test, x_qry_test, y_qry_test
if torch.cuda.is_available():
x_spt, y_spt, x_qry, y_qry = x_spt.cuda(), y_spt.cuda(), x_qry.cuda(), y_qry.cuda()
with torch.no_grad():
logits = net(x_qry[0], vars=None, bn_training=False)
logits_select = []
for no, val in enumerate(y_qry[0, :, 1].long()):
logits_select.append(logits[no, val])
logits = torch.stack(logits_select).unsqueeze(1)
loss_q = F.mse_loss(logits, y_qry[0, :, 0].unsqueeze(1))
lr_results[lrs].append(loss_q.item())
counter = 0
loss = 0
for k in range(len(x_spt)):
logits = net(x_spt[k], None, bn_training=False)
logits_select = []
for no, val in enumerate(y_spt[k, :, 1].long()):
logits_select.append(logits[no, val])
logits = torch.stack(logits_select).unsqueeze(1)
loss_vector[int(counter / (300))] += F.mse_loss(logits, y_spt[k, :, 0].unsqueeze(1)) / 300
counter += 1
loss_vector_results.append(loss_vector.tolist())
logger.info("Loss vector all %s", str(loss_vector_results))
logger.info("Avg MSE LOSS for lr %s = %s", str(lrs), str(np.mean(lr_results[lrs])))
logger.info("Std MSE LOSS for lr %s = %s", str(lrs), str(np.std(lr_results[lrs])))
loss_vector = loss_vector / runs
print("Loss vector = ", loss_vector)
my_experiment.results[str(lrs)] = str(loss_vector_results)
my_experiment.store_json()
torch.save(maml.net, my_experiment.path + "learner.model")
# #
if __name__ == '__main__':
argparser = argparse.ArgumentParser()
argparser.add_argument('--epoch', type=int, help='epoch number', default=20000)
argparser.add_argument('--seed', type=int, help='Seed for random', default=103450)
argparser.add_argument('--seeds', type=int, nargs='+', help='n way', default=[10])
argparser.add_argument('--classes', type=int, nargs='+', help='Total classes to use in training',
default=[0, 1, 2, 3, 4])
argparser.add_argument('--model', type=str, help='epoch number', default="none")
argparser.add_argument('--tasks', type=int, help='meta batch size, namely task num', default=10)
argparser.add_argument('--capacity', type=int, help='meta batch size, namely task num', default=10)
argparser.add_argument('--runs', type=int, help='meta batch size, namely task num', default=50)
argparser.add_argument('--meta_lr', type=float, help='meta-level outer learning rate', default=1e-4)
argparser.add_argument('--update_lr', type=float, help='task-level inner update learning rate', default=0.003)
argparser.add_argument('--update_step', type=int, help='task-level inner update steps', default=40)
argparser.add_argument('--name', help='Name of experiment', default="dolphin")
argparser.add_argument('--reset', action="store_true")
argparser.add_argument("--commit", action="store_true")
argparser.add_argument("--iid", action="store_true")
argparser.add_argument("--no-freeze", action="store_true")
argparser.add_argument("--rln", type=int, default=6)
args = argparser.parse_args()
args.name = "/".join(["sin", "evaluate", args.name])
print(args)
main(args)