-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathoml_omniglot_paper.py
92 lines (65 loc) · 3.4 KB
/
oml_omniglot_paper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import argparse
import logging
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
import datasets.datasetfactory as df
import datasets.task_sampler as ts
import configs.classification.class_parser as class_parser
import model.modelfactory as mf
import utils.utils as utils
from experiment.experiment import experiment
from model.meta_learner import MetaLearingClassification
logger = logging.getLogger('experiment')
def main():
p = class_parser.Parser()
total_seeds = len(p.parse_known_args()[0].seed)
rank = p.parse_known_args()[0].rank
all_args = vars(p.parse_known_args()[0])
print("All args = ", all_args)
args = utils.get_run(vars(p.parse_known_args()[0]), rank)
utils.set_seed(args['seed'])
my_experiment = experiment(args['name'], args, "../results/", commit_changes=False, rank=0, seed=1)
writer = SummaryWriter(my_experiment.path + "tensorboard")
logger = logging.getLogger('experiment')
# Using first 963 classes of the omniglot as the meta-training set
args['classes'] = list(range(963))
args['traj_classes'] = list(range(int(963 / 2), 963))
dataset = df.DatasetFactory.get_dataset(args['dataset'], background=True, train=True, path=args["path"], all=True)
dataset_test = df.DatasetFactory.get_dataset(args['dataset'], background=True, train=False, path=args["path"],
all=True)
# Iterators used for evaluation
iterator_test = torch.utils.data.DataLoader(dataset_test, batch_size=5,
shuffle=True, num_workers=1)
iterator_train = torch.utils.data.DataLoader(dataset, batch_size=5,
shuffle=True, num_workers=1)
sampler = ts.SamplerFactory.get_sampler(args['dataset'], args['classes'], dataset, dataset_test)
config = mf.ModelFactory.get_model("na", args['dataset'], output_dimension=1000)
gpu_to_use = rank % args["gpus"]
if torch.cuda.is_available():
device = torch.device('cuda:' + str(gpu_to_use))
logger.info("Using gpu : %s", 'cuda:' + str(gpu_to_use))
else:
device = torch.device('cpu')
maml = MetaLearingClassification(args, config).to(device)
for step in range(args['steps']):
t1 = np.random.choice(args['classes'], args['tasks'], replace=False)
d_traj_iterators = []
for t in t1:
d_traj_iterators.append(sampler.sample_task([t]))
d_rand_iterator = sampler.get_complete_iterator()
x_spt, y_spt, x_qry, y_qry = maml.sample_training_data_paper(d_traj_iterators, d_rand_iterator,
steps=args['update_step'], reset=not args['no_reset'])
if torch.cuda.is_available():
x_spt, y_spt, x_qry, y_qry = x_spt.to(device), y_spt.to(device), x_qry.to(device), y_qry.to(device)
#
accs, loss = maml(x_spt, y_spt, x_qry, y_qry)
# Evaluation during training for sanity checks
if step % 40 == 5:
writer.add_scalar('/metatrain/train/accuracy', accs[-1], step)
logger.info('step: %d \t training acc %s', step, str(accs))
if step % 300 == 3:
utils.log_accuracy(maml, my_experiment, iterator_test, device, writer, step)
utils.log_accuracy(maml, my_experiment, iterator_train, device, writer, step)
if __name__ == '__main__':
main()