forked from yuminsuh/part_bilinear_reid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
58 lines (49 loc) · 2.09 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import os.path as osp
import json
import numpy as np
import argparse
import torch
from torch.utils.data import DataLoader
from reid import datasets, models
from reid.evaluators import Evaluator
from reid.utils.data import transforms as T
from reid.utils.data.preprocessor import Preprocessor
from reid.utils.serialization import load_checkpoint
from reid.utils.osutils import set_paths
def evaluate(args):
# Settings
exp_dir = './logs/{}/{}'.format(args.dataset, args.exp)
target_epoch = args.epoch
batch_size = args.batchsize
gpu_ids = args.gpus
set_paths('paths')
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_ids
args = json.load(open(osp.join(exp_dir, "args.json"), "r"))
# Load data
t = T.Compose([
T.RectScale(args['height'], args['width']),
T.CenterCrop((args['crop_height'], args['crop_width'])),
T.ToTensor(),
T.RGB_to_BGR(),
T.NormalizeBy(255),
])
dataset = datasets.create(args['dataset'], 'data/{}'.format(args['dataset']))
dataset_ = Preprocessor(list(set(dataset.query)|set(dataset.gallery)), root=dataset.images_dir, transform=t)
dataloader = DataLoader(dataset_, batch_size=batch_size, shuffle=False)
# Load model
model = models.create(args['arch'], dilation=args['dilation'], use_relu=args['use_relu'], initialize=False).cuda()
weight_file = osp.join(exp_dir, 'epoch_{}.pth.tar'.format(target_epoch))
model.load(load_checkpoint(weight_file))
model.eval()
# Evaluate
evaluator = Evaluator(model)
evaluator.evaluate(dataloader, dataset.query, dataset.gallery)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Evaluation")
parser.add_argument('-d', '--dataset', type=str, default='market1501')
parser.add_argument('-e', '--exp', type=str, default='d2_b250')
parser.add_argument('-b', '--batchsize', type=int, default=50)
parser.add_argument('--gpus', type=str, default='0')
parser.add_argument('--epoch', type=int, default=750)
evaluate(parser.parse_args())