In this tutorial, we'll create a Kubernetes cluster on AWS with Flatcar Container Linux.
We'll declare a Kubernetes cluster using the Lokomotive Terraform module. Then apply the changes to create a VPC, gateway, subnets, security groups, controller instances, worker auto-scaling group, network load balancer, and TLS assets.
Controllers are provisioned to run an etcd-member
peer and a kubelet
service. Workers run just a kubelet
service. A one-time bootkube bootstrap schedules the apiserver
, scheduler
, controller-manager
, and coredns
on controllers and schedules kube-proxy
and calico
(or flannel
) on every node. A generated kubeconfig
provides kubectl
access to the cluster.
- AWS Account and IAM credentials
- AWS Route53 DNS Zone (registered Domain Name or delegated subdomain)
- Terraform v0.12.x and terraform-provider-ct installed locally
Install Terraform v0.12.x on your system.
$ terraform version
Terraform v0.12.17
Add the terraform-provider-ct plugin binary for your system to ~/.terraform.d/plugins/
, noting the final name.
wget https://github.com/poseidon/terraform-provider-ct/releases/download/v0.4.0/terraform-provider-ct-v0.4.0-linux-amd64.tar.gz
tar xzf terraform-provider-ct-v0.4.0-linux-amd64.tar.gz
mv terraform-provider-ct-v0.4.0-linux-amd64/terraform-provider-ct ~/.terraform.d/plugins/terraform-provider-ct_v0.4.0
Read concepts to learn about Terraform, modules, and organizing resources. Change to your infrastructure repository (e.g. infra
).
cd infra/clusters
Login to your AWS IAM dashboard and find your IAM user. Select "Security Credentials" and create an access key. Save the id and secret to a file that can be referenced in configs.
[default]
aws_access_key_id = xxx
aws_secret_access_key = yyy
Configure the AWS provider to use your access key credentials in a providers.tf
file.
provider "aws" {
version = "2.31.0"
region = "eu-central-1"
shared_credentials_file = "/home/user/.config/aws/credentials"
}
Additional configuration options are described in the aws
provider docs.
!!! tip
Regions are listed in docs or with aws ec2 describe-regions
.
Define a Kubernetes cluster using the module aws/flatcar-linux/kubernetes.
module "aws-tempest" {
source = "git::https://github.com/kinvolk/lokomotive-kubernetes//aws/flatcar-linux/kubernetes?ref=<hash>"
# AWS
cluster_name = "tempest"
dns_zone = "aws.example.com"
dns_zone_id = "Z3PAABBCFAKEC0"
# configuration
ssh_keys = [
"ssh-rsa AAAAB3Nz...",
"ssh-rsa AAAAB3Nz...",
]
asset_dir = "/home/user/.secrets/clusters/tempest"
# optional
worker_count = 2
worker_type = "t3.small"
}
Reference the variables docs or the variables.tf source.
Initial bootstrapping requires bootkube.service
be started on one controller node. Terraform uses ssh-agent
to automate this step. Add your SSH private key to ssh-agent
.
ssh-add ~/.ssh/id_rsa
ssh-add -L
Initialize the config directory if this is the first use with Terraform.
terraform init
Plan the resources to be created.
$ terraform plan
Plan: 98 to add, 0 to change, 0 to destroy.
Apply the changes to create the cluster.
$ terraform apply
...
module.aws-tempest.null_resource.bootkube-start: Still creating... (4m50s elapsed)
module.aws-tempest.null_resource.bootkube-start: Still creating... (5m0s elapsed)
module.aws-tempest.null_resource.bootkube-start: Creation complete after 11m8s (ID: 3961816482286168143)
Apply complete! Resources: 98 added, 0 changed, 0 destroyed.
In 4-8 minutes, the Kubernetes cluster will be ready.
Install kubectl on your system. Use the generated kubeconfig
credentials to access the Kubernetes cluster and list nodes.
$ export KUBECONFIG=/home/user/.secrets/clusters/tempest/auth/kubeconfig
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
ip-10-0-3-155 Ready controller,master 10m v1.14.1
ip-10-0-26-65 Ready node 10m v1.14.1
ip-10-0-41-21 Ready node 10m v1.14.1
List the pods.
$ kubectl get pods --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system calico-node-1m5bf 2/2 Running 0 34m
kube-system calico-node-7jmr1 2/2 Running 0 34m
kube-system calico-node-bknc8 2/2 Running 0 34m
kube-system coredns-1187388186-wx1lg 1/1 Running 0 34m
kube-system coredns-1187388186-qjnvp 1/1 Running 0 34m
kube-system kube-apiserver-4mjbk 1/1 Running 0 34m
kube-system kube-controller-manager-3597210155-j2jbt 1/1 Running 1 34m
kube-system kube-controller-manager-3597210155-j7g7x 1/1 Running 0 34m
kube-system kube-proxy-14wxv 1/1 Running 0 34m
kube-system kube-proxy-9vxh2 1/1 Running 0 34m
kube-system kube-proxy-sbbsh 1/1 Running 0 34m
kube-system kube-scheduler-3359497473-5plhf 1/1 Running 0 34m
kube-system kube-scheduler-3359497473-r7zg7 1/1 Running 1 34m
kube-system pod-checkpointer-4kxtl 1/1 Running 0 34m
kube-system pod-checkpointer-4kxtl-ip-10-0-3-155 1/1 Running 0 33m
Learn about maintenance.
Check the variables.tf source.
Name | Description | Example |
---|---|---|
cluster_name | Unique cluster name (prepended to dns_zone), maximal length 18 characters | "tempest" |
dns_zone | AWS Route53 DNS zone | "aws.example.com" |
dns_zone_id | AWS Route53 DNS zone id | "Z3PAABBCFAKEC0" |
ssh_keys | List of SSH public keys for user 'core' | ["ssh-rsa AAAAB3NZ..."] |
asset_dir | Path to a directory where generated assets should be placed (contains secrets, used to destroy the cluster), cannot be a relative path | "/home/user/.secrets/clusters/tempest" |
Clusters create a DNS A record ${cluster_name}.${dns_zone}
to resolve a network load balancer backed by controller instances. This FQDN is used by workers and kubectl
to access the apiserver(s). In this example, the cluster's apiserver would be accessible at tempest.aws.example.com
.
You'll need a registered domain name or delegated subdomain on AWS Route53. You can set this up once and create many clusters with unique names.
resource "aws_route53_zone" "zone-for-clusters" {
name = "aws.example.com."
}
Reference the DNS zone id with "${aws_route53_zone.zone-for-clusters.zone_id}"
.
!!! tip "" If you have an existing domain name with a zone file elsewhere, just delegate a subdomain that can be managed on Route53 (e.g. aws.mydomain.com) and update nameservers.
Name | Description | Default | Example |
---|---|---|---|
controller_count | Number of controllers (i.e. masters) | 1 | 1 |
worker_count | Number of workers | 1 | 3 |
controller_type | EC2 instance type for controllers | "t3.small" | See below |
worker_type | EC2 instance type for workers | "t3.small" | See below |
os_name | Name of the Operating System | "flatcar" | "flatcar", "coreos" |
os_channel | Channel for the OS | "stable" | "stable", "beta", "alpha", "edge" |
os_version | Version of the OS | "current" | "current" or numeric version such as "2261.99.0" |
disk_size | Size of the EBS volume in GB | 40 | 100 |
disk_type | Type of the EBS volume | "gp2" | "standard", "gp2", "io1" |
disk_iops | IOPS of the EBS volume | 0 (i.e. auto) | 400 |
worker_target_groups | Target group ARNs to which worker instances should be added | [] | ["${aws_lb_target_group.app.id}"] |
worker_price | Spot price in USD for workers. Leave as default empty string for regular on-demand instances | "" | "0.10" |
controller_clc_snippets | Controller Container Linux Config snippets | [] | example |
worker_clc_snippets | Worker Container Linux Config snippets | [] | example |
networking | Choice of networking provider | "calico" | "calico" or "flannel" |
network_mtu | CNI interface MTU (calico only) | 1480 | 8981 |
host_cidr | CIDR IPv4 range to assign to EC2 instances | "10.0.0.0/16" | "10.1.0.0/16" |
pod_cidr | CIDR IPv4 range to assign to Kubernetes pods | "10.2.0.0/16" | "10.22.0.0/16" |
service_cidr | CIDR IPv4 range to assign to Kubernetes services | "10.3.0.0/16" | "10.3.0.0/24" |
cluster_domain_suffix | FQDN suffix for Kubernetes services answered by coredns. | "cluster.local" | "k8s.example.com" |
certs_validity_period_hours | Validity of all the certificates in hours | 8760 | 17520 |
tags | Optional details to tag on AWS resources | {"ManagedBy" = "Lokomotive", "CreatedBy" = "Unspecified"} |
{"ManagedBy" = "Lokomotive", "CreatedBy" = "DevOps team"} |
Check the list of valid instance types.
!!! warning
Do not choose a controller_type
smaller than t2.small
. Smaller instances are not sufficient for running a controller.
!!! tip "MTU"
If your EC2 instance type supports Jumbo frames (most do), we recommend you change the network_mtu
to 8981! You will get better pod-to-pod bandwidth.
Add worker_price = "0.10"
to use spot instance workers (instead of "on-demand") and set a maximum spot price in USD. Clusters can tolerate spot market interuptions fairly well (reschedules pods, but cannot drain) to save money, with the tradeoff that requests for workers may go unfulfilled.