Skip to content
This repository has been archived by the owner on May 6, 2020. It is now read-only.

Latest commit

 

History

History
239 lines (174 loc) · 10.7 KB

File metadata and controls

239 lines (174 loc) · 10.7 KB

AWS

In this tutorial, we'll create a Kubernetes cluster on AWS with Flatcar Container Linux.

We'll declare a Kubernetes cluster using the Lokomotive Terraform module. Then apply the changes to create a VPC, gateway, subnets, security groups, controller instances, worker auto-scaling group, network load balancer, and TLS assets.

Controllers are provisioned to run an etcd-member peer and a kubelet service. Workers run just a kubelet service. A one-time bootkube bootstrap schedules the apiserver, scheduler, controller-manager, and coredns on controllers and schedules kube-proxy and calico (or flannel) on every node. A generated kubeconfig provides kubectl access to the cluster.

Requirements

  • AWS Account and IAM credentials
  • AWS Route53 DNS Zone (registered Domain Name or delegated subdomain)
  • Terraform v0.12.x and terraform-provider-ct installed locally

Terraform Setup

Install Terraform v0.12.x on your system.

$ terraform version
Terraform v0.12.17

Add the terraform-provider-ct plugin binary for your system to ~/.terraform.d/plugins/, noting the final name.

wget https://github.com/poseidon/terraform-provider-ct/releases/download/v0.4.0/terraform-provider-ct-v0.4.0-linux-amd64.tar.gz
tar xzf terraform-provider-ct-v0.4.0-linux-amd64.tar.gz
mv terraform-provider-ct-v0.4.0-linux-amd64/terraform-provider-ct ~/.terraform.d/plugins/terraform-provider-ct_v0.4.0

Read concepts to learn about Terraform, modules, and organizing resources. Change to your infrastructure repository (e.g. infra).

cd infra/clusters

Provider

Login to your AWS IAM dashboard and find your IAM user. Select "Security Credentials" and create an access key. Save the id and secret to a file that can be referenced in configs.

[default]
aws_access_key_id = xxx
aws_secret_access_key = yyy

Configure the AWS provider to use your access key credentials in a providers.tf file.

provider "aws" {
  version = "2.31.0"

  region                  = "eu-central-1"
  shared_credentials_file = "/home/user/.config/aws/credentials"
}

Additional configuration options are described in the aws provider docs.

!!! tip Regions are listed in docs or with aws ec2 describe-regions.

Cluster

Define a Kubernetes cluster using the module aws/flatcar-linux/kubernetes.

module "aws-tempest" {
  source = "git::https://github.com/kinvolk/lokomotive-kubernetes//aws/flatcar-linux/kubernetes?ref=<hash>"

  # AWS
  cluster_name = "tempest"
  dns_zone     = "aws.example.com"
  dns_zone_id  = "Z3PAABBCFAKEC0"

  # configuration
  ssh_keys = [
    "ssh-rsa AAAAB3Nz...",
    "ssh-rsa AAAAB3Nz...",
  ]

  asset_dir          = "/home/user/.secrets/clusters/tempest"

  # optional
  worker_count = 2
  worker_type  = "t3.small"
}

Reference the variables docs or the variables.tf source.

ssh-agent

Initial bootstrapping requires bootkube.service be started on one controller node. Terraform uses ssh-agent to automate this step. Add your SSH private key to ssh-agent.

ssh-add ~/.ssh/id_rsa
ssh-add -L

Apply

Initialize the config directory if this is the first use with Terraform.

terraform init

Plan the resources to be created.

$ terraform plan
Plan: 98 to add, 0 to change, 0 to destroy.

Apply the changes to create the cluster.

$ terraform apply
...
module.aws-tempest.null_resource.bootkube-start: Still creating... (4m50s elapsed)
module.aws-tempest.null_resource.bootkube-start: Still creating... (5m0s elapsed)
module.aws-tempest.null_resource.bootkube-start: Creation complete after 11m8s (ID: 3961816482286168143)

Apply complete! Resources: 98 added, 0 changed, 0 destroyed.

In 4-8 minutes, the Kubernetes cluster will be ready.

Verify

Install kubectl on your system. Use the generated kubeconfig credentials to access the Kubernetes cluster and list nodes.

$ export KUBECONFIG=/home/user/.secrets/clusters/tempest/auth/kubeconfig
$ kubectl get nodes
NAME           STATUS  ROLES              AGE  VERSION
ip-10-0-3-155  Ready   controller,master  10m  v1.14.1
ip-10-0-26-65  Ready   node               10m  v1.14.1
ip-10-0-41-21  Ready   node               10m  v1.14.1

List the pods.

$ kubectl get pods --all-namespaces
NAMESPACE     NAME                                      READY  STATUS    RESTARTS  AGE
kube-system   calico-node-1m5bf                         2/2    Running   0         34m
kube-system   calico-node-7jmr1                         2/2    Running   0         34m
kube-system   calico-node-bknc8                         2/2    Running   0         34m
kube-system   coredns-1187388186-wx1lg                  1/1    Running   0         34m
kube-system   coredns-1187388186-qjnvp                  1/1    Running   0         34m
kube-system   kube-apiserver-4mjbk                      1/1    Running   0         34m
kube-system   kube-controller-manager-3597210155-j2jbt  1/1    Running   1         34m
kube-system   kube-controller-manager-3597210155-j7g7x  1/1    Running   0         34m
kube-system   kube-proxy-14wxv                          1/1    Running   0         34m
kube-system   kube-proxy-9vxh2                          1/1    Running   0         34m
kube-system   kube-proxy-sbbsh                          1/1    Running   0         34m
kube-system   kube-scheduler-3359497473-5plhf           1/1    Running   0         34m
kube-system   kube-scheduler-3359497473-r7zg7           1/1    Running   1         34m
kube-system   pod-checkpointer-4kxtl                    1/1    Running   0         34m
kube-system   pod-checkpointer-4kxtl-ip-10-0-3-155      1/1    Running   0         33m

Going Further

Learn about maintenance.

Variables

Check the variables.tf source.

Required

Name Description Example
cluster_name Unique cluster name (prepended to dns_zone), maximal length 18 characters "tempest"
dns_zone AWS Route53 DNS zone "aws.example.com"
dns_zone_id AWS Route53 DNS zone id "Z3PAABBCFAKEC0"
ssh_keys List of SSH public keys for user 'core' ["ssh-rsa AAAAB3NZ..."]
asset_dir Path to a directory where generated assets should be placed (contains secrets, used to destroy the cluster), cannot be a relative path "/home/user/.secrets/clusters/tempest"

DNS Zone

Clusters create a DNS A record ${cluster_name}.${dns_zone} to resolve a network load balancer backed by controller instances. This FQDN is used by workers and kubectl to access the apiserver(s). In this example, the cluster's apiserver would be accessible at tempest.aws.example.com.

You'll need a registered domain name or delegated subdomain on AWS Route53. You can set this up once and create many clusters with unique names.

resource "aws_route53_zone" "zone-for-clusters" {
  name = "aws.example.com."
}

Reference the DNS zone id with "${aws_route53_zone.zone-for-clusters.zone_id}".

!!! tip "" If you have an existing domain name with a zone file elsewhere, just delegate a subdomain that can be managed on Route53 (e.g. aws.mydomain.com) and update nameservers.

Optional

Name Description Default Example
controller_count Number of controllers (i.e. masters) 1 1
worker_count Number of workers 1 3
controller_type EC2 instance type for controllers "t3.small" See below
worker_type EC2 instance type for workers "t3.small" See below
os_name Name of the Operating System "flatcar" "flatcar", "coreos"
os_channel Channel for the OS "stable" "stable", "beta", "alpha", "edge"
os_version Version of the OS "current" "current" or numeric version such as "2261.99.0"
disk_size Size of the EBS volume in GB 40 100
disk_type Type of the EBS volume "gp2" "standard", "gp2", "io1"
disk_iops IOPS of the EBS volume 0 (i.e. auto) 400
worker_target_groups Target group ARNs to which worker instances should be added [] ["${aws_lb_target_group.app.id}"]
worker_price Spot price in USD for workers. Leave as default empty string for regular on-demand instances "" "0.10"
controller_clc_snippets Controller Container Linux Config snippets [] example
worker_clc_snippets Worker Container Linux Config snippets [] example
networking Choice of networking provider "calico" "calico" or "flannel"
network_mtu CNI interface MTU (calico only) 1480 8981
host_cidr CIDR IPv4 range to assign to EC2 instances "10.0.0.0/16" "10.1.0.0/16"
pod_cidr CIDR IPv4 range to assign to Kubernetes pods "10.2.0.0/16" "10.22.0.0/16"
service_cidr CIDR IPv4 range to assign to Kubernetes services "10.3.0.0/16" "10.3.0.0/24"
cluster_domain_suffix FQDN suffix for Kubernetes services answered by coredns. "cluster.local" "k8s.example.com"
certs_validity_period_hours Validity of all the certificates in hours 8760 17520
tags Optional details to tag on AWS resources {"ManagedBy" = "Lokomotive", "CreatedBy" = "Unspecified"} {"ManagedBy" = "Lokomotive", "CreatedBy" = "DevOps team"}

Check the list of valid instance types.

!!! warning Do not choose a controller_type smaller than t2.small. Smaller instances are not sufficient for running a controller.

!!! tip "MTU" If your EC2 instance type supports Jumbo frames (most do), we recommend you change the network_mtu to 8981! You will get better pod-to-pod bandwidth.

Spot

Add worker_price = "0.10" to use spot instance workers (instead of "on-demand") and set a maximum spot price in USD. Clusters can tolerate spot market interuptions fairly well (reschedules pods, but cannot drain) to save money, with the tradeoff that requests for workers may go unfulfilled.