forked from smorabit/vc_tool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvc_helper.py
347 lines (263 loc) · 10.4 KB
/
vc_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
from sklearn.semi_supervised import LabelPropagation, LabelSpreading
from sklearn.model_selection import train_test_split
from multiprocessing import Pool
import matplotlib.pyplot as plt
import sklearn.metrics as metrics
import sys
import pickle
import sklearn.gaussian_process as gp
from scipy.stats import norm
from scipy.optimize import minimize
#error handling classes:
class Error(Exception):
pass
class FormatError(Error):
def __init__(self, message):
self.message = message
class vc_helper():
def __init__(self):
self.X = ""
self.Y = ""
self.pca = ""
self.seeds = ""
self.models = ""
self.gammas = ""
self.pcs = ""
self.threads = ""
#check that the file is formatted correctly
def verify_bedfile(self, bedfile, training=True):
print("Verifying format of {}".format(bedfile))
with open(bedfile) as bed:
data = bed.readlines()
header_fields = data[0].split()
#check that the file has a header line:
if data[0][0] != "#":
error_message = "Header missing \nfile: {}".format(bedfile)
#check for required columns chrom, start, end, and label
if training == True:
if header_fields[:3] + [header_fields[-1]] != ["#chrom", "start", "end", "label"]:
error_message = "Required header fields missing in training file. #chrom start end should be the first three fields, and label should be the last field. \nfile: {}".format(bedfile)
raise FormatError(error_message)
else:
if header_fields[:3] != ["#chrom", "start", "end"]:
error_message = "Required header fields missing in testing file. #chrom start end should be the first three fields, and label should be the last field. \nfile: {}".format(bedfile)
raise FormatError(error_message)
#get number of fields that we expect from header line
num_fields = len(data[0].split())
for i, line in enumerate(data[1:]):
info = line.split()
#verify end >= start
if (int(info[2]) >= int(info[1])) is False:
error_message = "Coordinate start position is greater than end position \nfile: {} \nline num: {}".format(bedfile, i+2)
raise FormatError(error_message)
#check for correct number of features:
if len(info) != num_fields:
error_message = "Number of fields inconsistent with header \nfile: {}\nline num: {}".format(bedfile, i+2)
raise FormatError(error_message)
return data
def load_dataframe(self, feature_file, training=True):
from sklearn import preprocessing
feat_df = pd.read_table(feature_file)
#reset index
feat_df["chrom:pos"] = feat_df["#chrom"].map(str) + ":" + feat_df["end"].map(str)
feat_df.set_index(["chrom:pos"], inplace=True)
#drop unnecessary columns:
feat_df.drop(["#chrom", "start", "end"], axis=1, inplace=True)
#normalize data:
scaler = preprocessing.StandardScaler()
if training==True:
norm = scaler.fit_transform(X=feat_df.drop(["label"], axis=1))
else:
norm = scaler.fit_transform(X=feat_df)
return feat_df, norm
def principal_components(self, norm, pca_dataset, n_pcs):
pca = PCA(n_components=n_pcs)
'''
pca.fit(pca_dataset)
pca_out = pca.transform(norm)
'''
pca_out = pca.fit_transform(norm)
return pca_out
def sample_loss_grid(self, norm, labels, pca_dataset, gamma, n_pcs, seeds):
print("evaluating model with gamma={}, num_pcs={}".format(gamma, n_pcs), file=sys.stderr)
accuracy, precision, aucs = [], [], []
pca_data = self.principal_components(norm, pca_dataset, n_pcs)
for seed in seeds:
a, p, auc, conf = self.evaluate_model(pca_data, labels, gamma, seed)
accuracy.append(a)
precision.append(p)
aucs.append(auc)
model = LabelPropagation(
kernel='rbf',
gamma=gamma,
max_iter=1000000
).fit(pca_data, labels)
return [np.mean(aucs), np.mean(precision), np.mean(accuracy), model]
def sample_loss_bayesian(self, p):
accuracy, precision, aucs = [], [], []
gamma = p[0]
num_pcs = int(p[1])
print("evaluating model with gamma={}, num_pcs={}".format(gamma, num_pcs), file=sys.stderr)
pca_data = self.principal_components(self.X, self.pca, num_pcs)
for seed in self.seeds:
a, p, auc, conf = self.evaluate_model(pca_data, self.Y, gamma, seed)
accuracy.append(a)
precision.append(p)
aucs.append(auc)
model = LabelPropagation(
kernel='rbf',
gamma=gamma,
max_iter=1000000
).fit(pca_data, self.Y)
#return score
return [np.mean(aucs), np.mean(precision), np.mean(accuracy), model]
def evaluate_model(self, X, Y, gamma, seed, max_iter=100000):
#set random seed:
np.random.seed(seed)
X_train, X_test, Y_train, Y_test = train_test_split(
X,
Y,
stratify = Y,
test_size = 0.20,
random_state = seed
)
lp_model = LabelPropagation(
kernel = 'rbf',
gamma=gamma,
max_iter = max_iter
)
lp_model.fit(X_train, Y_train)
#test model on validation data
predicted_labels = lp_model.predict(X_test)
predicted_prob = lp_model.predict_proba(X_test)
#get just the labeled testing data:
labeled_prob = [p[1] for i, p in enumerate(predicted_prob) if Y_test[i] in [0, 1]]
labels = [p for i, p in enumerate(predicted_labels) if Y_test[i] in [0, 1]]
true_labels = [l for l in Y_test if l in [0,1]]
#evaluation
accuracy = metrics.accuracy_score(true_labels, labels)
precision = metrics.precision_score(true_labels, labels)
auc = metrics.roc_auc_score(true_labels, labeled_prob)
conf = metrics.confusion_matrix(true_labels, labels)
return accuracy, precision, auc, conf
def grid_search(self, parameters):
print("start running grid search", file=sys.stderr)
with Pool(self.threads) as pool:
loss = pool.starmap(self.sample_loss_grid, parameters)
print("finished running grid search", file=sys.stderr)
return loss
def bayesian_search(self, parameters):
print("start running bayesian search", file=sys.stderr)
bounds = np.array([self.gammas, self.pcs])
seeds = self.seeds
xp, yp = self.bayesian_optimisation(
n_iters=self.biters,
sample_loss=self.sample_loss_bayesian,
bounds = bounds,
n_pre_samples=1,
random_search=100000
)
print("finished running bayesian search", file=sys.stderr)
return xp, yp
def testing_predictions(self, test_data, model, num_pcs, gamma=False, max_iter=1000000, mean=False):
pca_data = self.principal_components(test_data, self.pca, num_pcs)
if mean == False:
return np.array([p[1] for p in model.predict_proba(pca_data)])
train_pca_data = self.principal_components(self.X, self.pca, num_pcs)
predicted_probs = ""
for seed in self.seeds:
np.random.seed(seed)
model = LabelPropagation(
kernel = 'rbf',
gamma=gamma,
max_iter = max_iter
)
model.fit(train_pca_data, self.Y)
predicted_prob = np.array([p[1] for p in model.predict_proba(pca_data)])
if predicted_probs == "":
predicted_probs = predicted_prob
else:
predicted_probs = np.vstack((predicted_probs, predicted_prob))
#get mean of each run:
mean_probs = np.mean(predicted_probs, axis=0)
return mean_probs
def expected_improvement(self, x, gaussian_process, evaluated_loss, greater_is_better=False, n_params=1):
x_to_predict = x.reshape(-1, n_params)
mu, sigma = gaussian_process.predict(x_to_predict, return_std=True)
if greater_is_better:
loss_optimum = np.max(evaluated_loss)
else:
loss_optimum = np.min(evaluated_loss)
scaling_factor = (-1) ** (not greater_is_better)
# In case sigma equals zero
with np.errstate(divide='ignore'):
Z = scaling_factor * (mu - loss_optimum) / sigma
expected_improvement = scaling_factor * (mu - loss_optimum) * norm.cdf(Z) + sigma * norm.pdf(Z)
expected_improvement[sigma == 0.0] == 0.0
return -1 * expected_improvement
# adapted from https://github.com/thuijskens/bayesian-optimization
def sample_next_hyperparameter(self, acquisition_func, gaussian_process, evaluated_loss, greater_is_better=False,
bounds=(0, 10), n_restarts=25):
best_x = None
best_acquisition_value = 1
n_params = bounds.shape[0]
for starting_point in np.random.uniform(bounds[:, 0], bounds[:, 1], size=(n_restarts, n_params)):
res = minimize(fun=acquisition_func,
x0=starting_point.reshape(1, -1),
bounds=bounds,
method='L-BFGS-B',
args=(gaussian_process, evaluated_loss, greater_is_better, n_params))
if res.fun < best_acquisition_value:
best_acquisition_value = res.fun
best_x = res.x
return best_x
#adapted from https://github.com/thuijskens/bayesian-optimization
def bayesian_optimisation(self, n_iters, sample_loss, bounds, x0=None, n_pre_samples=5,
gp_params=None, random_search=False, alpha=1e-5, epsilon=1e-7):
x_list = []
y_list = []
n_params = bounds.shape[0]
if x0 is None:
#for params in np.random.uniform(bounds[:, 0], bounds[:, 1], (n_pre_samples, bounds.shape[0])):
for params in np.hstack((np.random.uniform(bounds[0][0], bounds[0][1], (n_pre_samples, 1)), np.random.randint(bounds[1][0], bounds[1][1], (n_pre_samples, 1)))):
x_list.append(params)
y_list.append(sample_loss(params))
else:
for params in x0:
x_list.append(params)
y_list.append(sample_loss(params))
xp = np.array(x_list)
yp = np.array(y_list)
# Create the GP
if gp_params is not None:
model = gp.GaussianProcessRegressor(**gp_params)
else:
kernel = gp.kernels.Matern()
model = gp.GaussianProcessRegressor(kernel=kernel,
alpha=alpha,
n_restarts_optimizer=10,
normalize_y=True)
for n in range(n_iters):
model.fit(xp, yp[:,0])
# Sample next hyperparameter
if random_search:
x_random = np.hstack((np.random.uniform(bounds[0][0], bounds[0][1], size=(random_search, 1)), np.random.randint(bounds[1][0], bounds[1][1], size=(random_search, 1))))
ei = -1 * self.expected_improvement(x_random, model, yp[:,0], greater_is_better=True, n_params=n_params)
next_sample = x_random[np.argmax(ei), :]
else:
next_sample = sample_next_hyperparameter(self.expected_improvement, model, yp[:,0], greater_is_better=True, bounds=bounds, n_restarts=100)
# Duplicates will break the GP. In case of a duplicate, we will randomly sample a next query point.
if np.any(np.abs(next_sample - xp) <= epsilon):
next_sample = [np.random.uniform(bounds[0][0], bounds[0][1]), np.random.randint(bounds[1][0], bounds[1][1])]
# Sample loss for new set of parameters
cv_score = sample_loss(next_sample)
# Update lists
x_list.append(next_sample)
y_list.append(cv_score)
# Update xp and yp
xp = np.array(x_list)
yp = np.array(y_list)
return xp, yp