-
Notifications
You must be signed in to change notification settings - Fork 0
/
higherCorankGeneralization.tex
496 lines (445 loc) · 26 KB
/
higherCorankGeneralization.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
\documentclass[12pt,oneside,reqno]{amsart}
\pagenumbering{arabic}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{latexsym}
\usepackage{amsfonts,setspace}
\usepackage{fullpage}
\usepackage{indentfirst}
\usepackage{algorithm,algpseudocode}
\usepackage{color}
\usepackage{changepage}
\usepackage{paralist}
%\usepackage{enumitem}
\usepackage{tikz}
\usepackage{bm}
\usepackage{kpfonts}
\usepackage[T1]{fontenc}
% Remove the following before submission
\usepackage{todonotes}
\usepackage{refcheck}
\usepackage{makecell}
\usepackage{pict2e}
\usepackage{amsthm}
\theoremstyle{definition}
\newtheorem{thm}{Theorem}
\newtheorem{rmk}[thm]{Remark}
\newtheorem{prop}[thm]{Proposition}
\newtheorem{cor}[thm]{Corollary}
\newtheorem{lem}[thm]{Lemma}
\newtheorem{lemdef}[thm]{Lemma/Definition}
\newtheorem{exm}[thm]{Example}
\newtheorem{defi}[thm]{Definition}
\renewcommand{\qedsymbol}{$\#$}
% \setlength{\textwidth}{6.5in}
% \setlength{\textheight}{9in}
% \setlength{\topmargin}{-0.5in}
% \setlength{\evensidemargin}{0in}
% \setlength{\oddsidemargin}{0in}
% \setlength{\headheight}{0in}
% \setlength{\headsep}{0in}
\setlength{\abovedisplayskip}{3mm}
\setlength{\belowdisplayskip}{3mm}
\setlength{\abovedisplayshortskip}{0mm}
\setlength{\belowdisplayshortskip}{2mm}
\setlength{\baselineskip}{12pt}
\setlength{\normalbaselineskip}{12pt}
\newcommand{\anton}[1]{{\color{red} (Anton: #1)}}
\newcommand{\kisun}[2]{{\color{blue} (Kisun: #2)}}
\newcommand{\blank}{\underline{~~~~~~~~~}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\FF}{\mathbb{F}}
\newcommand{\KK}{\mathbb{K}}
\newcommand{\calB}{\mathcal{B}}
\newcommand{\calC}{\mathcal{C}}
\newcommand{\appx}{{\widetilde x}}
%\newcommand{\pointnorm}[1]{\|#1\|_1}
\newcommand{\pointnorm}[1]{\|(1,#1)\|}
\newcommand{\bu}{\mathbf{u}}
\newcommand{\bv}{\mathbf{v}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\by}{\mathbf{y}}
\newcommand{\bb}{\mathbf{b}}
\newcommand{\bc}{\mathbf{c}}
\newcommand{\bp}{\mathbf{p}}
\newcommand{\bq}{\mathbf{q}}
\newcommand{\be}{\mathbf{e}}
\newcommand{\bzero}{\mathbf{0}}
\DeclareMathOperator{\Nul}{Nul}
\DeclareMathOperator{\Mod}{mod}
\DeclareMathOperator{\ord}{ord}
\DeclareMathOperator{\GL}{GL}
\DeclareMathOperator{\SL}{SL}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\End}{End}
\DeclareMathOperator{\Ind}{Ind}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\tr}{tr}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\diffop}{\mathbf{d}^\mathbf{\alpha}_x}
\title{Computing simple multiple zeros of polynomial system}
\begin{document}
\maketitle
\subsection{The main goal}
Dedieu and Shub \cite{dedieu2001simple} suggests a numerical criterion for multiple zeros of a system of analytic functions for multiplicity $2$ case. We want to generalize these results into the simple zeros of multiplicity $\mu$ with corank $\mu-1$ case for polynomial system.
More precisely, for a square polynomial system $f:\mathbb{C}^n\rightarrow \mathbb{C}^n$ with small $\|f(x)\|,\|Df(x)\|$ and some additional conditions, we want to conclude that $x$ is close to (or a part of) cluster of $\mu$ points in a disk of some radius $r$ and that we can correspond $(f,x)$ to $(\tilde{f},\tilde{x})$ where $\tilde{f}$ is a polynomial system with a solution $\tilde{x}$ with multiplicity $\mu$ and $\dim\ker D\tilde{f}(\tilde{x})=\mu - 1$.
\subsection{Local dual space}
Let $\mathbf{d}^\mathbf{\alpha}_x :\mathbb{C}[X]\rightarrow \mathbb{C}$ denote the differential functional defined by
\[\diffop(g)=\frac{1}{\alpha_1!\cdots \alpha_n!}\frac{\partial^{|\mathbf{\alpha}|}g}{\partial {X_1}^{\alpha_1}\cdots \partial{X_n}^{\alpha_n}}(x), \quad g\in \mathbb{C}[X]\]
where $x\in \mathbb{C}^n$ and $\mathbf{\alpha}\in \mathbb{N}^n$.
%Let $I_f$ be an ideal generated by a polynomial system $f=\{f_1,\dots,f_n\}$. If we let $\mathfrak{D_x}=span_\mathbb{C}\{\diffop\}$, then the local dual space $\mathcal{D}_{f,x}$ of $I_f$ at a given isolated singular solution
\begin{itemize}
\item $I_f$ : an ideal generated by a polynomial system $f=\{f_1,\dots, f_n\}:\mathbb{C}^n\rightarrow\mathbb{C}^n$.
\item $x\in \mathbb{C}^n$ : an isolated multiple root of $f$.
\item $Q$ : the primary component of $I_f$ at $x$.
\item $\mathfrak{D}_x=span_\mathbb{C}\{\diffop\}$.
\item $\mathcal{D}_{f,x}=\{\Lambda \in \mathfrak{D}_x \mid \Lambda(g)=0, g\in I_f\}$ : the local dual space of $I_f$ at a given isolated singular solution $x$.
\item $\mathcal{D}_{f,x}^{(k)}$ : the subspace of $\mathcal{D}_{f,x}$ with functionals of orders bounded by $k$.
\end{itemize}
Using these notations, we define
\begin{enumerate}
\item breadth $\kappa = \dim\left(\mathcal{D}_{f,x}^{(1)}\setminus\mathcal{D}_{f,x}^{(0)}\right)$,
\item depth $\rho = \min\left(\left\{k\mid \dim\left(\mathcal{D}_{f,x}^{(k+1)}\setminus\mathcal{D}_{f,x}^{(k)}\right)=0\right\}\right)$,
\item multiplicity $\mu = \dim \left(\mathcal{D}_{f,x}^{(\rho)}\right)$.
\end{enumerate}
\begin{lemdef}\cite[Lemma 4.1]{hauenstein2015certifying}
Let $f,x,Q,\mathcal{D}_{f,x},\mu, \rho$ be as above. Then, there is a primal-dual basis pair of the local ring $\mathbb{C}[X]/Q$ with the following properties:
\begin{itemize}
\item The {\it primal basis} of the local ring $\mathbb{C}[X]/Q$ has the form
\[B:=\{(X-x)^{\alpha_1},\dots, (X-x)^{\alpha_\mu}\}.\]
We can assume that $\alpha_1=0$ and that the monomials in $B$ are {\it connected to $1$} (see \cite{mourrain1999new}). Let $E:=\{\alpha_1,\dots, \alpha_\mu\}$ be the set of exponents in $B$.
\item There is a unique {\it dual basis} in $\mathcal{D}_{f,x}$ orthogonal to $B$, i.e., the basis elements are given in the following form:
\begin{eqnarray*}
\Lambda_0 & = & 1\\
\Lambda_1 & = & \frac{1}{\alpha_2!}\mathbf{d}_x^{\alpha_2}+\sum\limits_{\substack{|\beta|\leq \rho\\ \beta \notin E}}a_{\alpha_2,\beta}\mathbf{d}^\beta_x\\
&\vdots &\\
\Lambda_{\mu-1} & = & \frac{1}{\alpha_{\mu}!}\mathbf{d}_x^{\alpha_\mu}+\sum\limits_{\substack{|\beta|\leq \rho\\ \beta \notin E}}a_{\alpha_\mu,\beta}\mathbf{d}^\beta_x
\end{eqnarray*}
\item We have $0=\ord(\Lambda_0)\leq \cdots \leq \ord(\Lambda_{\mu-1})$, and for all $0\leq k \leq \rho$, we have
\[\mathcal{D}_{f,x}^{(k)}=span_\CC\{\Lambda_j\mid \ord(\Lambda_j)\leq k\}\]
\end{itemize}
\end{lemdef}
%If $x$ is an isolated singular solution of $f$, then $1\leq \kappa\leq n$ and $\rho < \mu <\infty$.
%Also, we introduce an anti-differentiation operator $\Phi_\sigma:\mathfrak{D}_x\rightarrow\mathfrak{D}_x$ and a differentiation operator $\Psi_\sigma:\mathfrak{D}_x\rightarrow\mathfrak{D}_x$ defined by
%\[\Phi_\sigma(d_1^{\alpha_1}\cdots d_n^{\alpha_n})=\left\{\begin{array}{ll}
%d_1^{\alpha_1}\cdots d_\sigma ^{\alpha_\sigma -1}\cdots d_n^{\alpha_n}, & \text{if }\alpha_\sigma>0\\
%0, & \text{otherwise}.
%\end{array}\right.\]
%and
%\[\Psi_\sigma(d_1^{\alpha_1}\cdots d_n^{\alpha_n})=\left\{\begin{array}{ll}
%d_\sigma^{\alpha_\sigma+1}\cdots d_n^{\alpha_n}, & \text{if }\alpha_1=\cdots =\alpha_{\sigma-1}=0,\\
%0, & \text{otherwise}.
%\end{array}\right.\]
We deal with simple zeros with multiplicity $\mu$ satisfying $f(x)=0, \dim \ker Df(x)=\mu-1\geq 2$. Therefore, $\mu=\kappa+1, \rho =1$.
It means that we have
\[\mathcal{D}_{f,x}=span_\mathbb{C}\{\Lambda_0,\Lambda_1,\cdots,\Lambda_{\mu-1}\}\]
where $\Lambda_0=1$ and $\deg(\Lambda_i)=1$ for $i=1,\dots,\mu-1$. Then, the following definition is the generalization of the definition of simple multiple roots in \cite{dedieu2001simple}.
\begin{defi}\label{def:simpleMultipleZero}
Let $f:\mathbb{C}^n\rightarrow\mathbb{C}^n$ be a polynomial system and suppose that $f(x)=0$. Then, $x$ is a {\it simple zero with multiplicity $\mu$ with corank $\mu-1$} for $f$ if
\begin{itemize}
\item[(A)] $\dim\ker Df(x)=\mu -1$
\item[(B)] $D^2f(x)(v_i,v_i)\notin \im Df(x)$
\end{itemize}
where $\ker Df(x)=span_\CC\{v_1,\dots, v_{\mu-1}\}$ with $\|v_i\|=1$ for all $i=1,\dots, \mu-1$.
\end{defi}
If a polynomial system $f(X)$ has the {\it normalized form} below, then we may assume that $v_i=\mathbf{e}_{n-(\mu-1-i)}^\top$ for $i=1,\dots, \mu-1$ in definition \ref{def:simpleMultipleZero}.
\begin{defi}
For a polynomial function $f=\{f_1,\dots, f_n\}:\mathbb{C}^n\rightarrow\mathbb{C}^n$, $Df(x)$ has a normalized form if
\[Df(x)=\begin{bmatrix}
D\hat{f}(x) & 0 & \cdots & 0\\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{bmatrix},\label{eq:normalizedForm}\]
where $D\hat{f}(x)$ is the nonsingular Jacobian matrix of polynomials $\hat{f}=\{f_1,\dots, f_{n-{(\mu-1)}}\}$ with respect to $\hat{X}=\{X_1,\dots, X_{n-{(\mu-1)}}\}$.
\end{defi}
Even in the case that $f(X)$ has no normalized form, we can perform a proper unitary transformations to obtain a polynomial system which has a normalized form. For a polynomial system $f:\CC^n \rightarrow \CC^n$ and its simple zero $x$ of multiplicity $\mu$ with corank $\mu-1$, consider the singular value decomposition $Df(x)=U\begin{bmatrix}
\Sigma_{n-(\mu-1)} & 0 \\
0 & 0
\end{bmatrix}V^*$ of $Df(x)$. If $f(X)$ has no normalized form, then define a polynomial system $g:\CC^n\rightarrow \CC^n$ such that $g=U^*f(VX)$. Then, $V^*x$ is a simple zero of multiplicity $\mu$ with corank $\mu-1$ for $g(X)$. Furthermore,
\begin{eqnarray*}
Dg(V^*x) & = & U^*Df(x)V\\
& = & U^*U \begin{bmatrix}
\Sigma_{n-(\mu-1)} & 0 \\
0 & 0
\end{bmatrix}V^* V \\
& = & \begin{bmatrix}
\Sigma_{n-(\mu-1)} & 0 \\
0 & 0
\end{bmatrix}.
\end{eqnarray*}
Since $V$ is a unitary matrix, for another zero $y$ of $f$, $V^*y$ is also a zero of $g$ and we also have
\[\|V^*x-V^*y\|=\|V^*(x-y)\|=\|x-y\|.\]
Using $g$ instead of $f$, we always assume a normalized form of $f$.
Using a normalized form of $f$, we are able to have elements of dual basis $\Lambda_1=d_{n-(\mu-2)},\Lambda_2=d_{n-(\mu-3)},\dots,\Lambda_{\mu-1}=d_n$ for $\mathcal{D}_{f,x}$. Then, we can redefine the simple zero of multiplicity $\mu$ with corank $\mu-1$ in the following way:
\begin{defi}
Let $f:\mathbb{C}^n\rightarrow\mathbb{C}^n$ be a polynomial system which has a normalized form and suppose that $f(x)=0$. Then, $x$ is a {\it simple zero with multiplicity $\mu$ with corank $\mu-1$} for $f$ if
\begin{itemize}
\item[(A)] $\dim\ker Df(x)=\mu -1$
\item[(B)] $d_k(f_j)=0$ for $k=n-(\mu-2),\dots,n$ and $j=n-(\mu-2),\dots,n$,
\item[(C)] $d_{j}^2(f_{j})\ne0$ for $j=n-(\mu-2),\dots, n$.
\end{itemize}
\end{defi}
\subsection{Results}
Let $x$ be a simple zero with multiplicity $\mu$ with corank $\mu-1$ of $f$ and $Df(x)$ has a normalized form in definition \ref{eq:normalizedForm}. Then, we have
\[\frac{\partial f_i(x)}{\partial X_j}=0,\quad \frac{\partial f_j(x)}{\partial X_i}=0, \quad 1\leq i\leq n,\quad j=n-(\mu-2),\dots,n\]
and
\[d_k(f_j)=0,\quad d_j^2(f_j)\ne 0\quad \text{for }j,k=n-(\mu-2),\dots,n.\]
Then, we redefine the parameter $\gamma$ in $\alpha$-theory in the following way:
$$\gamma_{\kappa}(f,x)=\max(\hat{\gamma}_{\kappa},\gamma_{\kappa,n-(\mu -2)},\dots,\gamma_{\kappa,n})$$
where
\[\hat{\gamma}_{\kappa}(f,x)=\max\left(1,\sup\limits_{k\geq 2}\left\|D\hat{f}(x)^{-1}\frac{D^k\hat{f}(x)}{k!}\right\|^{\frac{1}{k-1}}\right),\]
and
\[\gamma_{\kappa,j}=\max\left(1,\sup\limits_{k\geq 2}\left\|\frac{1}{d_j^2(f_j)}\frac{D^k f_j(x)}{k!}\right\|^{\frac{1}{k-1}}\right)\quad \text{ for } j=n-(\mu-2),\dots,n\]
Also, we have a universal constant $d\approx 0.120031$, and an invertible operator
\[\mathcal{A}=\begin{bmatrix}
\sqrt{\mu}D\hat{f}(x) & 0 & 0 & \cdots & 0\\
0 & \frac{1}{\sqrt{\mu}}d_{n-(\mu-2)}^2(f_{n-(\mu-2)}) &0 & \cdots & 0 \\
0 & 0 & \frac{1}{\sqrt{\mu}}d_{n-(\mu-3)}^2(f_{n-(\mu-3)}) & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots &\frac{1}{\sqrt{\mu}}d_{n}^2(f_{n})
\end{bmatrix}.\]
From now on, $\|\cdot \|$ is the usual Euclidean norm.
\begin{thm}\label{thm:tripleRootSeparationBound}
Let $x$ be an isolated simple zero multiplicity $\mu$ with corank $\mu-1$ of the polynomial system $f:\mathbb{C}^n\rightarrow\mathbb{C}^n$. Then, if we let $y$ be another zero of $f$, then
\[\|y-x\|\geq \frac{d}{2\gamma_\kappa^2}\]
\end{thm}
\begin{thm}\label{thm:lowerboundfy}
Let $x$ be an isolated simple zero multiplicity $\mu$ with corank $\mu-1$ of the polynomial system $f:\mathbb{C}^n\rightarrow \mathbb{C}^n$. Then, for any $y\in \CC^n$ if $\|y-x\|\leq \frac{d}{4\gamma_\kappa^2}$, then
\[\left\|f(y)\right\|\geq \frac{d\|y-x\|^2}{\|\mathcal{A}^{-1}\|}\]
\end{thm}
Now for $R>0$, define
\begin{equation*}
d_R(f,g)=\max\limits_{\|y-x\|\leq R}\|f(y)-g(y)\|.
\end{equation*}
\begin{thm}\label{thm:multiplicityOfDiffSystem}
Let $x$ be an isolated simple zero of multiplicity $\mu$ with corank $\mu-1$ of the polynomial system $f:\mathbb{C}^n\rightarrow\mathbb{C}^n$, and $0<R\leq \frac{d}{4\gamma_\kappa^2}$. If $d_R(f,g)<\frac{dR^2}{\|\mathcal{A}^{-1}\|}$, then the sum of the mulitplicities of the zeros of $g$ in $B(x,R)$ is $\mu$.
\end{thm}
Now, we will state the main theorem. Let $f:\mathbb{C}^n\rightarrow\mathbb{C}^n$ be any polynomial system and $x$ be any point in $\CC^n$ such that $D\hat{f}(x)$ is invertible and $d_j^2(f_j)\ne 0$ for all $j=n-(\mu-2),\dots,n$. We define a $n\times n$-matrix
\[H=\begin{bmatrix}
0 & \frac{\partial\hat{f}(x)}{\partial X_{n-(\mu-2)}} & \cdots & \frac{\partial\hat{f}(x)}{\partial X_{n}}\\
\frac{\partial f_{n-(\mu-2)}(x)}{\partial\hat{X}} & \frac{\partial f_{n-(\mu-2)}(x)}{\partial X_{n-(\mu-2)}} & \cdots & \frac{\partial f_{n-(\mu-2)}(x)}{\partial X_{n}}\\
\vdots & \vdots & & \vdots \\
\frac{\partial f_{n}(x)}{\partial\hat{X}} & \frac{\partial f_{n}(x)}{\partial X_{n-(\mu-2)}} & \cdots & \frac{\partial f_{n}(x)}{\partial X_{n}}
\end{bmatrix}\]
and a polynomial
\[g(X)= f(X)-f(x)-H(X-x).\]
\begin{thm}\label{thm:clusterthm}
If we let $\gamma_\kappa=\gamma_\kappa(g,x)$ and \[\|f(x)\|+\|H\|\frac{d}{4\gamma_\kappa^2}<\frac{d^3}{16\gamma_\kappa^4\|\mathcal{A}^{-1}\|},\]
then $f$ has $\mu$ zeros (counting multiplicities) in the ball of radius $\frac{d}{4\gamma_\kappa^2}$ around $x$.
\end{thm}
\subsection{Proofs}
For two nonzero vectors $a,b\in \mathbb{C}^n$, we define their angle by
\[d_P(a,b)=\arccos\frac{|\left<a,b\right>|}{\|a\|\|b\|}.\]
Let $y$ be another zero of $f$ and define
\[w=y-x=\left(\begin{array}{c}
\eta_1\\
\vdots\\
\eta_{n-(\mu-1)}\\
\zeta_{n-(\mu-2)}\\
\vdots \\
\zeta_n
\end{array}\right),\quad \eta=\left(\begin{array}{c}
\eta_1\\
\vdots\\
\eta_{n-(\mu -1)}
\end{array}\right),\quad\eta_{n-(\mu-2)}=\left(\begin{array}{c}
\eta\\
0\\
\zeta_{n-(\mu -3)}\\
\vdots \\
\zeta_n
\end{array}\right),\dots, \eta_{n}=\left(\begin{array}{c}
\eta\\
\zeta_{n-(\mu -2)}\\
\vdots\\
\zeta_{n-1}\\
0
\end{array}\right).\]
Then, for $v_{n-(\mu-2)}=\mathbf{e}_{n-(\mu-2)}^\top,\dots, v_n=\mathbf{e}_n^\top$ and $v=\sum\limits_{i=n-(\mu-2)}^n\zeta_{i}v_{i}$, we define $\varphi=d_P(v,w)$ and $\varphi_j=d_P(v_j,w)$ for $j=n-(\mu-2),\dots, n$. Then, we have
\[\|\eta\|=\|w\|\sin\varphi,\quad |\zeta_j|=\|w\|\cos\varphi_j,\quad\text{ and }\quad\|\eta_j\|=\|w\|\sin\varphi_j \quad\text{ for }j=n-(\mu-2),\dots,n.\]
Also, we have $\cos^2\varphi = \sum\limits_{i=n-(\mu-2)}^n\cos ^2\varphi_{i}$.
\begin{lem}\label{lem:sinIneq}
For $\varphi_{n-(\mu-2)},\dots,\varphi_n,\varphi \in [0,\frac{\pi}{2}]$,
\[\sum\limits_{i=n-(\mu-2)}^n\sin\varphi_{i}\geq \sin \varphi\]
\end{lem}
\begin{proof}
Take a square on both sides. Then,
\begin{eqnarray*}
\left(\sum\limits_{i=n-(\mu-2)}^n\sin\varphi_{i}\right)^2& \geq & \sum\limits_{i=n-(\mu-2)}^n\sin^2 \varphi_i\\
&\geq & (\mu-1)-\sum\limits_{i=n-(\mu-2)}^n\cos^2\varphi_{i}\\
& \geq & 1-\cos^2 \varphi\\
& = & \sin^2 \varphi
\end{eqnarray*}
Therefore, the claim is proved.
\end{proof}
\begin{lem}\cite[Lemma 1]{hao2017computing}\label{lem:bigAngleCase}
If $\gamma_\kappa(f,x)\|w\|\leq \frac{1}{2}$, then
\[\left\|D\hat{f}(x)^{-1}\hat{f}(y)\right\|\geq \|w\|\sin\varphi -2\hat{\gamma}_\kappa(f,x)\|w\|^2.\]
\end{lem}
\begin{proof}
Considering Taylor expansion of $\hat{f}(y)$ at $x$, since $\frac{\partial\hat{f}(x)}{\partial X_{j}}=0$ for $j=n-(\mu-2),\dots, n$, we have
\[\hat{f}(y)=\hat{f}(x)+D\hat{f}(x)\eta +\sum\limits_{k\geq 2}\frac{D^k\hat{f}(x)(y-x)^k}{k!}.\]
Because $\hat{f}(x)=0$ and $D\hat{f}(x)$ is invertible, we have
\[\eta = D\hat{f}(x)^{-1}\hat{f}(y)-\sum\limits_{k\geq 2}D\hat{f}(x)^{-1}\frac{D^k\hat{f}(x)(y-x)^k}{k!}.\]
Then, applying triangular inequality and the assumption $\gamma_\kappa(f,x)\|w\|\leq \frac{1}{2}$, we have
\begin{eqnarray*}
\|w\|\sin\varphi =\|\eta\| & \leq & \left\|D\hat{f}(x)^{-1}\hat{f}(y)\right\|+\sum\limits_{k\geq 2}\left\|D\hat{f}(x)^{-1}\frac{D^k\hat{f}(x)}{k!}\right\|\|y-x\|^k\\
&\leq & \left\|D\hat{f}(x)^{-1}\hat{f}(y)\right\| + \sum\limits_{k\geq 2}\hat{\gamma}_{\kappa}(f,x)^{k-1}\|w\|^k\\
& \leq & \left\|D\hat{f}(x)^{-1}\hat{f}(y)\right\| +2\hat{\gamma}_\kappa(f,x)\|w\|^2.
\end{eqnarray*}
\end{proof}
\begin{lem}\label{lem:inverseOperatorLowerbound}
If $\gamma_\kappa(f,x)\|w\|\leq \frac{1}{2}$, then
\[\left\|\mathcal{A}^{-1}f(y)\right\|\geq \sum\limits_{j=n-(\mu-2)}^n\left(\left(\frac{1}{2}\cos^2\varphi_{j}-2\gamma_{\kappa}\cos\varphi_j\sin\varphi_j-\gamma_{\kappa}\sin^2\varphi_j\right)\|w\|^2 -2\gamma_{\kappa}^2\|w\|^3\right)\]
\end{lem}
\begin{proof}
Let us denote $\hat{X}_n=\{X_1,\dots, X_{n-1}\}$ the set of all variables except $X_n$. Consider the Taylor expansion of $f_{n}(x)$. Then, we have
{\footnotesize \[f_{n}(y)=\frac{1}{2}\frac{\partial^2 f_{n}(x)}{\partial X_{n}^2}\zeta_{n}^2+\frac{\partial^2 f_{n}(x)}{\partial X_{n}\partial \hat{X}_n}\zeta_{n}\eta_n+\frac{1}{2}\frac{\partial^2 f_{n}(x)}{\partial\hat{X}_n^2}\eta_n^2 +\sum\limits_{k\geq 3}Df_{n}(x)^{-1}\frac{D^kf_{n}(x)}{k!}w^k\]}
Dividing by $d_{n}^2(f_{n})$ on both sides,
{\footnotesize \[\frac{1}{d_{n}^2(f_{n})}f_{n}(y)=\frac{1}{2}\zeta_{n}^2+\frac{1}{d_{n}^2(f_{n})}\left(\frac{\partial^2 f_{n}(x)}{\partial X_{n}\partial \hat{X}_n}\zeta_{n}\eta_n+\frac{1}{2}\frac{\partial^2 f_{n}(x)}{\partial\hat{X}_n^2}\eta_n^2 +\sum\limits_{k\geq 3}Df_{n}(x)^{-1}\frac{D^k\hat{f}_{n}(x)}{k!}w^k\right).\]}
Now, note that if we have $i+j=k$, then
{\footnotesize\[\left\|\frac{\partial^k f_{n}(x)}{\partial X_{n}^i\partial \hat{X}_n^j}\right\|\leq \left\|D^k f_{n}(x)\right\|\]}
Then, we have
{\footnotesize
\begin{eqnarray*}
\frac{1}{2}\left|\zeta_{n}\right|^2 &\leq & \left|\frac{1}{d_{n}^2(f_{n})}f_{n}(y)\right| + 2\gamma_\kappa|\zeta_{n}|\|\eta_n\|+\gamma_\kappa\|\eta_n\|^2 +\sum\limits_{k\geq 3}\gamma_\kappa^{k-1}\|w\|^k\\
&\leq & \left|\frac{1}{d_{n}^2(f_{n})}f_{n}(y)\right| + 2\gamma_\kappa|\zeta_{n}|\|\eta_n\|+\gamma_\kappa\|\eta_n\|^2 +2\gamma_\kappa^{2}\|w\|^3
\end{eqnarray*}
}
The last inequality comes from the assumption that $\gamma_\kappa(f,x)\|w\|\leq \frac{1}{2}$.
Then, since $|\zeta_{n}|=\|w\|\cos\varphi_{n}, \|\eta_n\|=\|w\|\sin\varphi_{n}$, we have
{\footnotesize
\begin{eqnarray*}
\frac{1}{2}\|w\|^2\cos^2\varphi_{n}& \leq & \left|\frac{1}{d_{n}^2(f_{n})}f_{n}(y)\right| + 2\gamma_\kappa\|w\|^2\cos\varphi_{n}\sin\varphi_{n}+\gamma_\kappa\|w\|^2\sin^2\varphi_{n}+2\gamma_\kappa^2\|w\|^3.
\end{eqnarray*}
}
It implies that
{\footnotesize
\begin{eqnarray*}
\left(\frac{1}{2}\cos^2\varphi_{n}-2\gamma_\kappa\cos\varphi_{n}\sin\varphi_{n}-\gamma_\kappa\sin^2\varphi_{n}\right)\|w\|^2-2\gamma_\kappa^2\|w\|^3&\leq & \left|\frac{1}{d_{n}^2(f_{n})}f_{n}(y)\right| .
\end{eqnarray*}}
Likewise, we have for $j=n-(\mu-2),\dots, n$
{\footnotesize
\begin{eqnarray*}
\left(\frac{1}{2}\cos^2\varphi_{j}-2\gamma_\kappa\cos\varphi_{j}\sin\varphi_{j}-\gamma_\kappa\sin^2\varphi_{j}\right)\|w\|^2-2\gamma_\kappa^2\|w\|^3&\leq & \left|\frac{1}{d_{j}^2(f_{j})}f_{j}(y)\right|.
\end{eqnarray*}}
Thus,
$${\footnotesize
\begin{array}{l}
\sum\limits_{j=n-(\mu-2)}^n\left(\left(\frac{1}{2}\cos^2\varphi_{j}-2\gamma_{\kappa}\cos\varphi_j\sin\varphi_j-\gamma_{\kappa}\sin^2\varphi_j\right)\|w\|^2 -2\gamma_{\kappa}^2\|w\|^3\right)\\
\leq \sum\limits_{j=n-(\mu-2)}^n \left|\frac{1}{d_{j}^2(f_{j})}f_{j}(y)\right| \\
\leq \sqrt{\mu}\left\|\left(\begin{array}{c}
\frac{1}{\mu}D\hat{f}(x)^{-1}\hat{f}(y)\\
\frac{1}{d_{n-(\mu-2)}^2(f_{n-(\mu-2)})}f_{n-(\mu-2)}(y)\\
\vdots\\
\frac{1}{d_{n}^2(f_{n})}f_{n}(y)
\end{array}\right)\right\|\\
\leq \left\|\left(\begin{array}{ccc}
\frac{1}{\sqrt{\mu}}D\hat{f}(x)^{-1} & 0 \\
0 & \begin{bmatrix}
\frac{\sqrt{\mu}}{d_{n-(\mu-2)}^2(f_{n-(\mu-2)})} & & O \\
& \ddots & \\
O & & \frac{\sqrt{\mu}}{d_{n}^2(f_{n})}
\end{bmatrix}
\end{array}\right)\left(\begin{array}{c}
\hat{f}(y)\\
f_{n-(\mu-2)}(y)\\
\vdots \\
f_n(y)
\end{array}\right)\right\|\\
\leq \left\|\mathcal{A}^{-1}\left(\begin{array}{c}
\hat{f}(y)\\
f_{n-(\mu-2)}(y)\\
\vdots \\
f_n(y)
\end{array}\right)\right\|=\left\|\mathcal{A}^{-1}f(y)\right\|.
\end{array}}$$
\end{proof}
\begin{lem}\label{lem:operatorlowerbound}
Let $d\approx 0.120031$ be the positive root of the equation
\begin{equation*}
(1-d^2)-4d\sqrt{1-d^2}-2d^2 -4d=0.
\end{equation*}
Let $\theta$ be defined by
\begin{equation*}
\sin \theta=\frac{d}{\gamma_\kappa}.
\end{equation*}
Then, if $\gamma_\kappa(f,x)\|w\|\leq \frac{1}{2}$, then for any $y\in \mathbb{C}^n$, either
\[\theta\leq \varphi\leq \frac{\pi}{2}\text{ and }\left\|\mathcal{A}^{-1}f(y)\right\|\geq \frac{2}{\sqrt{3}}\gamma_\kappa\|w\|\left(\frac{\sin\theta}{2\gamma_\kappa}-\|w\|\right),\]
or
\[0\leq \varphi \leq \theta \text{ and }\left\|\mathcal{A}^{-1}f(y)\right\|\geq 4\gamma_\kappa^2\|w\|\left(\frac{\sin\theta}{2\gamma_\kappa}-\|w\|\right).\]
\end{lem}
\begin{proof}
Let $\theta\leq \varphi\leq \frac{\pi}{2}$. Then, by lemma \ref{lem:bigAngleCase}, we have
{\footnotesize
\begin{eqnarray*}
\sqrt{\mu}\left\|\mathcal{A}^{-1}f(y)\right\| & \geq & \left\|D\hat{f}(x)^{-1}\hat{f}(y)\right\|\\
&\geq & \|w\|\sin\varphi -2\hat{\gamma}_\kappa(f,x)\|w\|^2 \geq 2\gamma_\kappa\|w\|\left(\frac{\sin\theta}{2\gamma_\kappa}-\|w\|\right)
\end{eqnarray*}}
Now, let $0\leq \varphi \leq \theta$. By lemma \ref{lem:inverseOperatorLowerbound}, we have
{\footnotesize
\[\left\|\mathcal{A}^{-1}f(y)\right\|\geq \sum\limits_{j=n-(\mu-2)}^n\left(\left(\frac{1}{2}\cos^2\varphi_{j}-2\gamma_{\kappa}\cos\varphi_j\sin\varphi_j-\gamma_{\kappa}\sin^2\varphi_j\right)\|w\|^2 -2\gamma_{\kappa}^2\|w\|^3\right).\]}
Let
{\footnotesize
\[h(\varphi) = \frac{\cos^2 \varphi - 4\gamma_\kappa \cos\varphi \sin\varphi - 2\gamma_\kappa\sin^2\varphi}{4\gamma_\kappa^2}.\]}
We claim that
\[h(\theta)\geq \frac{\sin\theta}{\gamma_\kappa}.\]
Since $\sin\theta=\frac{d}{\gamma_\kappa}$, it is enough to show that
{\footnotesize
\begin{equation}\label{eq:h_inequality}
\left(1-\frac{d^2}{\gamma_\kappa^2}\right)-4d\sqrt{1-\frac{d^2}{\gamma_\kappa^2}}-2\frac{d^2}{\gamma_\kappa}-4d\geq 0.
\end{equation}}
For any fixed value of $d\in \left[0,\frac{1}{2}\right]$, the function of $\gamma_\kappa$ in (\ref{eq:h_inequality}) is increasing when $\gamma_\kappa\geq 1$. Therefore, it suffices to check this inequality is true for $\gamma_\kappa=1$. Since, $d\approx 0.120031$ is the smallest positive root of
\[(1-d^2)-4d\sqrt{1-d^2}-2d^2-4d\]
which lies in $\left[0,\frac{1}{2}\right]$, we have $h(\theta)\geq\frac{\sin\theta}{\gamma_\kappa}$.
Moreover, since $\gamma_\kappa\geq 1$, we have $\sin \theta \leq d$, and so $\theta \leq \arcsin d$. Since $h(\varphi)$ is nonnegative and decreasing for $\varphi\in \left[0,\arcsin d\right]$, if $0\leq \varphi \leq \theta$, then $h(\varphi)\geq h(\theta)\geq\frac{\sin \theta}{\gamma_\kappa}$. Therefore, by lemma \ref{lem:sinIneq} and \ref{lem:inverseOperatorLowerbound},
{\footnotesize \begin{eqnarray*}
\left\|\mathcal{A}^{-1}f(y)\right \|&\geq& \sum\limits_{j=n-(\mu-2)}^n 2\gamma_\kappa^2\|w\|^2\left(h(\varphi_{j})-\|w\|\right)\geq 2\gamma_\kappa^2\|w\|^2\left(\frac{\sum\limits_{j=n-(\mu-2)}^n\sin\varphi_j}{\gamma_\kappa}-2\|w\|\right)\\
& \geq & 4\gamma_\kappa^2\|w\|^2\left(\frac{\sin\varphi}{2\gamma_\kappa}-\|w\|\right)
\end{eqnarray*}}
\end{proof}
\begin{proof}[Proof of Theorem \ref{thm:tripleRootSeparationBound}]
Let $w=y-x$ as above. Since $f(y)=0$, if $\gamma_\kappa\|w\|\leq \frac{1}{2}$, then by lemma \ref{lem:operatorlowerbound}, we have
\[\|y-x\|=\|w\|\geq\frac{\sin\theta}{2\gamma_\kappa}=\frac{d}{2\gamma_\kappa^2} .\]
In the case of $\gamma_\kappa\|w\|\geq \frac{1}{2}$, the claim holds because $d<1$ and $\gamma_\kappa\geq 1$.
\end{proof}
\begin{proof}[Proof of Theorem \ref{thm:lowerboundfy}]
Note that
\[\|w\|=\|y-x\|\leq \frac{d}{4\gamma_\kappa^2}=\frac{\sin\theta}{4\gamma_\kappa}.\]
Therefore, by lemma \ref{lem:inverseOperatorLowerbound}, we have
\[\left\|\mathcal{A}^{-1}f(y)\right\|\geq 4\gamma_\kappa^2\|w\|^2\left(\frac{\sin\theta}{2\gamma_\kappa}-\|w\|\right)\geq4\gamma_\kappa^2\|w\|^2\frac{\sin\theta}{4\gamma_\kappa}=d\|w\|^2\]
\end{proof}
\begin{proof}[Proof of Theorem \ref{thm:multiplicityOfDiffSystem}]
Note that for any $y$ satisfying $\|y-x\|=R$, we have
\[\|f(y)-g(y)\|\leq d_R(f,g)<\frac{dR^2}{\left\|\mathcal{A}^{-1}\right\|}\leq \|f(y)\|\]
by theorem \ref{thm:lowerboundfy}. Then, by Rouch\'e's theorem, $f$ and $g$ have the same number of zeros inside $B(x,R)$. Since $x$ is the only root of $f$ inside $B(x,R)$ by theorem \ref{thm:tripleRootSeparationBound}, $g$ has $\mu$ zeros in $B(x,R)$.
\end{proof}
\begin{proof}[Proof of Theorem \ref{thm:clusterthm}]
Note that $g(x)=0$ from the definition of $g(X)$. Also,
\[Dg(x)=Df(x)-H=\begin{bmatrix}
D\hat{f}(x) & 0 \\
0 & 0
\end{bmatrix}.\]
Moreover, we have
\begin{eqnarray*}
d_j(f_j) = \frac{\partial f_{j}}{\partial X_j} - \frac{\partial f_{j}}{\partial X_j} = 0,\\
d_j^2(f_j) = \frac{\partial^2 f_{j}}{\partial X_j^2}\ne 0.
\end{eqnarray*}
It means that $Dg(x)$ satisfies the normalized form, and $x$ is a simple root multiplicity $\mu$ with corank $\mu - 1$ for $g$. Now, let $R=\frac{d}{4\gamma_\kappa^2}$, then we find that
\begin{eqnarray*}
d_R(g,f)&=&\max\limits_{\|y-x\|\leq R}\|g(y)-f(y)\|\\
& \leq & \|f(x)\|+\|H\|R\\
& = & \|f(x)\|+\|H\|\frac{d}{4\gamma_\kappa^2}.
\end{eqnarray*}
Now, suppose that
\[\|f(x)\|+\|H\|\frac{d}{4\gamma_\kappa^2}<\frac{d^3}{16\gamma_\kappa^4\|\mathcal{A}^{-1}\|}.\]
Then, $d_R(g,f)< \frac{dR^2}{\|\mathcal{A}^{-1}\|}$, and so by theorem \ref{thm:multiplicityOfDiffSystem}, $f$ has $\mu$ zeros (counting multiplicities) in the ball $B(x,R)$.
\end{proof}
\bibliography{ref.bib}
\bibliographystyle{plain}
\end{document}