-
Notifications
You must be signed in to change notification settings - Fork 204
/
Copy pathdata_preparation_mini.py
198 lines (174 loc) · 8.34 KB
/
data_preparation_mini.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import uuid
import tqdm
import numpy as np
import cv2
import sys
import os
import math
import pickle
import mediapipe as mp
mp_face_mesh = mp.solutions.face_mesh
mp_face_detection = mp.solutions.face_detection
def detect_face(frame, min_detection_confidence = 0.5):
# 剔除掉多个人脸、大角度侧脸(鼻子不在两个眼之间)、部分人脸框在画面外、人脸像素低于80*80的
with mp_face_detection.FaceDetection(
model_selection=1, min_detection_confidence=min_detection_confidence) as face_detection:
results = face_detection.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
if not results.detections or len(results.detections) > 1:
return -1, None
rect = results.detections[0].location_data.relative_bounding_box
out_rect = [rect.xmin, rect.xmin + rect.width, rect.ymin, rect.ymin + rect.height]
nose_ = mp_face_detection.get_key_point(
results.detections[0], mp_face_detection.FaceKeyPoint.NOSE_TIP)
l_eye_ = mp_face_detection.get_key_point(
results.detections[0], mp_face_detection.FaceKeyPoint.LEFT_EYE)
r_eye_ = mp_face_detection.get_key_point(
results.detections[0], mp_face_detection.FaceKeyPoint.RIGHT_EYE)
# print(nose_, l_eye_, r_eye_)
if nose_.x > l_eye_.x or nose_.x < r_eye_.x:
return -2, out_rect
h, w = frame.shape[:2]
# print(frame.shape)
if out_rect[0] < 0 or out_rect[2] < 0 or out_rect[1] > w or out_rect[3] > h:
return -3, out_rect
if rect.width * w < 60 or rect.height * h < 60:
return -4, out_rect
return 1, out_rect
def calc_face_interact(face0, face1):
x_min = min(face0[0], face1[0])
x_max = max(face0[1], face1[1])
y_min = min(face0[2], face1[2])
y_max = max(face0[3], face1[3])
tmp0 = ((face0[1] - face0[0]) * (face0[3] - face0[2])) / ((x_max - x_min) * (y_max - y_min))
tmp1 = ((face1[1] - face1[0]) * (face1[3] - face1[2])) / ((x_max - x_min) * (y_max - y_min))
return min(tmp0, tmp1)
def detect_face_mesh(frame):
with mp_face_mesh.FaceMesh(
static_image_mode=True,
max_num_faces=1,
refine_landmarks=True,
min_detection_confidence=0.5) as face_mesh:
results = face_mesh.process(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
pts_3d = np.zeros([478, 3])
if not results.multi_face_landmarks:
print("****** WARNING! No face detected! ******")
else:
image_height, image_width = frame.shape[:2]
for face_landmarks in results.multi_face_landmarks:
for index_, i in enumerate(face_landmarks.landmark):
x_px = min(math.floor(i.x * image_width), image_width - 1)
y_px = min(math.floor(i.y * image_height), image_height - 1)
z_px = min(math.floor(i.z * image_width), image_width - 1)
pts_3d[index_] = np.array([x_px, y_px, z_px])
return pts_3d
def ExtractFromVideo(video_path, face_rect=None):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return 0
dir_path = os.path.dirname(video_path)
vid_width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) # 宽度
vid_height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) # 高度
totalFrames = cap.get(cv2.CAP_PROP_FRAME_COUNT) # 总帧数
totalFrames = int(totalFrames)
pts_3d = np.zeros([totalFrames, 478, 3])
face_rect_list = []
# os.makedirs("../preparation/{}/image".format(model_name))
for frame_index in tqdm.tqdm(range(totalFrames)):
ret, frame = cap.read() # 按帧读取视频
# #到视频结尾时终止
if ret is False:
break
if frame_index == 0:
# 检测人脸
tag_, rect = detect_face(frame, min_detection_confidence = 0.25)
if tag_ != 1:
tag_, rect = detect_face(frame[int(0.1 * vid_height):int(0.9 * vid_height),
int(0.1 * vid_width):int(0.9 * vid_width)], min_detection_confidence=0.25)
assert tag_ == 1, "第一帧检测不到人脸"
x_min = int(rect[0] * vid_width + 0.1 * vid_width)
y_min = int(rect[2] * vid_height + 0.1 * vid_height)
x_max = int(rect[1] * vid_width + 0.1 * vid_width)
y_max = int(rect[3] * vid_height + 0.1 * vid_height)
else:
x_min = int(rect[0] * vid_width)
y_min = int(rect[2] * vid_height)
x_max = int(rect[1] * vid_width)
y_max = int(rect[3] * vid_height)
y_mid = (y_min + y_max) / 2.
x_mid = (x_min + x_max) / 2.
len_ = max(x_max - x_min, y_max - y_min)
face_rect = [x_mid - len_, y_mid - len_, x_mid + len_, y_mid + len_]
x_min, y_min, x_max, y_max = face_rect
seq_w, seq_h = x_max - x_min, y_max - y_min
x_mid, y_mid = (x_min + x_max) / 2, (y_min + y_max) / 2
crop_size = int(max(seq_w * 1.35, seq_h * 1.35))
x_min = int(max(0, x_mid - crop_size * 0.5))
y_min = int(max(0, y_mid - crop_size * 0.45))
x_max = int(min(vid_width, x_min + crop_size))
y_max = int(min(vid_height, y_min + crop_size))
frame_face = frame[y_min:y_max, x_min:x_max]
# print(y_min, y_max, x_min, x_max)
# cv2.imshow("s", frame_face)
# cv2.waitKey(10)
frame_kps = detect_face_mesh(frame_face)
pts_3d[frame_index] = frame_kps + np.array([x_min, y_min, 0])
# point_size = 1
# point_color = (0, 0, 255) # BGR
# thickness = 4 # 0 、4、8
# for coor in pts_3d[frame_index]:
# # coor = (coor +1 )/2.
# cv2.circle(frame, (int(coor[0]), int(coor[1])), point_size, point_color, thickness)
# cv2.imshow("a", frame)
# cv2.waitKey(30)
cap.release() # 释放视频对象
return pts_3d
def PrepareVideo(video_in_path, video_out_path, face_rect=[200, 200, 520, 520], resize_option = False):
# 1 视频转换为25FPS
if resize_option:
cap = cv2.VideoCapture(video_in_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
scale = min(720 / width, 1280 / height)
new_width = int(width * scale)
new_height = int(height * scale)
# 确保新的宽高为偶数
new_width = new_width //2*2
new_height = new_height //2*2
cap.release()
# 补全 FFmpeg 命令
ffmpeg_cmd = "ffmpeg -i {} -vf \"scale={}:{}\" -r 25 -an -y {}".format(video_in_path, new_width, new_height,
video_out_path)
else:
ffmpeg_cmd = "ffmpeg -i {} -r 25 -an -y {}".format(video_in_path, video_out_path)
os.system(ffmpeg_cmd)
print(ffmpeg_cmd)
cap = cv2.VideoCapture(video_out_path)
frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
cap.release()
print("视频帧数:", frames)
pts_3d = ExtractFromVideo(video_out_path, face_rect)
assert type(pts_3d) is np.ndarray and len(pts_3d) == frames,"关键点已提取"
Path_output_pkl = video_out_path[:-4] + ".pkl"
with open(Path_output_pkl, "wb") as f:
pickle.dump(pts_3d, f)
def data_preparation_mini(video_mouthOpen, video_mouthClose, video_dir_path, resize_option = False):
new_data_path = os.path.join(video_dir_path, "data")
os.makedirs(new_data_path, exist_ok=True)
video_out_path = "{}/circle.mp4".format(new_data_path)
# CirculateVideo(video_mouthClose, video_out_path, face_rect=[290, 190, 440, 350])
PrepareVideo(video_mouthClose, video_out_path, face_rect=None, resize_option = resize_option)
video_out_path = "{}/ref.mp4".format(new_data_path)
PrepareVideo(video_mouthOpen, video_out_path, face_rect=None)
def main():
# 检查命令行参数的数量
if len(sys.argv) != 4:
print("Usage: python data_preparation_mini.py <张嘴视频> <闭嘴视频> <输出文件夹位置>")
sys.exit(1) # 参数数量不正确时退出程序
# 获取video_name参数
video_mouthOpen = sys.argv[1]
video_mouthClose = sys.argv[2]
video_dir_path = sys.argv[3]
print(f"Video dir path is set to: {video_dir_path}")
data_preparation_mini(video_mouthOpen, video_mouthClose, video_dir_path)
if __name__ == "__main__":
main()