forked from princeton-vl/RAFT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
executable file
·208 lines (149 loc) · 6.68 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from __future__ import print_function, division
import argparse
import os
import cv2
import time
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from core.raft import RAFT
from evaluate import validate_sintel, validate_kitti
from core import datasets
# exclude extremly large displacements
MAX_FLOW = 1000
SUM_FREQ = 200
VAL_FREQ = 5000
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def sequence_loss(flow_preds, flow_gt, valid):
""" Loss function defined over sequence of flow predictions """
n_predictions = len(flow_preds)
flow_loss = 0.0
# exlude invalid pixels and extremely large diplacements
valid = (valid >= 0.5) & (flow_gt.abs().sum(dim=1) < MAX_FLOW)
for i in range(n_predictions):
i_weight = 0.8**(n_predictions - i - 1)
i_loss = (flow_preds[i] - flow_gt).abs()
flow_loss += i_weight * (valid[:, None] * i_loss).mean()
epe = torch.sum((flow_preds[-1] - flow_gt)**2, dim=1).sqrt()
epe = epe.view(-1)[valid.view(-1)]
metrics = {
'epe': epe.mean().item(),
'1px': (epe < 1).float().mean().item(),
'3px': (epe < 3).float().mean().item(),
'5px': (epe < 5).float().mean().item(),
}
return flow_loss, metrics
def fetch_dataloader(args):
""" Create the data loader for the corresponding training set """
if args.dataset == 'chairs':
train_dataset = datasets.FlyingChairs(args, image_size=args.image_size)
elif args.dataset == 'things':
clean_dataset = datasets.SceneFlow(args, image_size=args.image_size, dstype='frames_cleanpass')
final_dataset = datasets.SceneFlow(args, image_size=args.image_size, dstype='frames_finalpass')
train_dataset = clean_dataset + final_dataset
elif args.dataset == 'sintel':
clean_dataset = datasets.MpiSintel(args, image_size=args.image_size, dstype='clean')
final_dataset = datasets.MpiSintel(args, image_size=args.image_size, dstype='final')
train_dataset = clean_dataset + final_dataset
elif args.dataset == 'kitti':
train_dataset = datasets.KITTI(args, image_size=args.image_size, is_val=False)
gpuargs = {'num_workers': 4, 'drop_last' : True}
train_loader = DataLoader(train_dataset, batch_size=args.batch_size,
pin_memory=True, shuffle=True, **gpuargs)
print('Training with %d image pairs' % len(train_dataset))
return train_loader
def fetch_optimizer(args, model):
""" Create the optimizer and learning rate scheduler """
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon)
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps,
pct_start=0.2, cycle_momentum=False, anneal_strategy='linear')
return optimizer, scheduler
class Logger:
def __init__(self, model, scheduler):
self.model = model
self.scheduler = scheduler
self.total_steps = 0
self.running_loss = {}
def _print_training_status(self):
metrics_data = [self.running_loss[k]/SUM_FREQ for k in sorted(self.running_loss.keys())]
training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, self.scheduler.get_lr()[0])
metrics_str = ("{:10.4f}, "*len(metrics_data)).format(*metrics_data)
# print the training status
print(training_str + metrics_str)
for key in self.running_loss:
self.running_loss[key] = 0.0
def push(self, metrics):
self.total_steps += 1
for key in metrics:
if key not in self.running_loss:
self.running_loss[key] = 0.0
self.running_loss[key] += metrics[key]
if self.total_steps % SUM_FREQ == SUM_FREQ-1:
self._print_training_status()
self.running_loss = {}
def train(args):
model = RAFT(args)
model = nn.DataParallel(model)
print("Parameter Count: %d" % count_parameters(model))
if args.restore_ckpt is not None:
model.load_state_dict(torch.load(args.restore_ckpt))
model.cuda()
model.train()
if 'chairs' not in args.dataset:
model.module.freeze_bn()
train_loader = fetch_dataloader(args)
optimizer, scheduler = fetch_optimizer(args, model)
total_steps = 0
logger = Logger(model, scheduler)
should_keep_training = True
while should_keep_training:
for i_batch, data_blob in enumerate(train_loader):
image1, image2, flow, valid = [x.cuda() for x in data_blob]
optimizer.zero_grad()
flow_predictions = model(image1, image2, iters=args.iters)
loss, metrics = sequence_loss(flow_predictions, flow, valid)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
scheduler.step()
total_steps += 1
logger.push(metrics)
if total_steps % VAL_FREQ == VAL_FREQ-1:
PATH = 'checkpoints/%d_%s.pth' % (total_steps+1, args.name)
torch.save(model.state_dict(), PATH)
if total_steps == args.num_steps:
should_keep_training = False
break
PATH = 'checkpoints/%s.pth' % args.name
torch.save(model.state_dict(), PATH)
return PATH
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--name', default='bla', help="name your experiment")
parser.add_argument('--dataset', help="which dataset to use for training")
parser.add_argument('--restore_ckpt', help="restore checkpoint")
parser.add_argument('--small', action='store_true', help='use small model')
parser.add_argument('--lr', type=float, default=0.00002)
parser.add_argument('--num_steps', type=int, default=100000)
parser.add_argument('--batch_size', type=int, default=6)
parser.add_argument('--image_size', type=int, nargs='+', default=[384, 512])
parser.add_argument('--iters', type=int, default=12)
parser.add_argument('--wdecay', type=float, default=.00005)
parser.add_argument('--epsilon', type=float, default=1e-8)
parser.add_argument('--clip', type=float, default=1.0)
parser.add_argument('--dropout', type=float, default=0.0)
args = parser.parse_args()
torch.manual_seed(1234)
np.random.seed(1234)
if not os.path.isdir('checkpoints'):
os.mkdir('checkpoints')
# scale learning rate and batch size by number of GPUs
num_gpus = torch.cuda.device_count()
args.batch_size = args.batch_size * num_gpus
args.lr = args.lr * num_gpus
train(args)