Skip to content

Latest commit

 

History

History
52 lines (44 loc) · 2.6 KB

README.md

File metadata and controls

52 lines (44 loc) · 2.6 KB

concurrent hash

Build Release codecov Go Report Card Go Reference

A simple two level Merkle tree for hashing large files to ensure integrity. Fast hashing algorithms exist for the case of large files but they dont consider the entire file and thus cannot guarantee integrity. Concurrently hashing blocks of the file and then hashing the hashes is not a new idea, both zfs and btrfs hash inodes all the way up the directory tree to ensure the filesystem is not corrupted.

Usage

Library

var ch = concurrenthash.NewConcurrentHash(context.Background(), 2, 2, sha512.New)
var hash, err = ch.HashFile(file)
fmt.Println(hash)

Some hash algorithms do not have constructors that return hash.Hash so there are convenience wrappers you can use.

Cli

./concurrenthash -file /path/to/large/file -threads 4 -block-size 1

Options:
 -algos                 print available hash algos
 -file                  input file
 -hash-func             hash algo to use, default: sha256
 -threads               amount of concurrency, default: 1
 -block-size            size of the leaf nodes to be hashed, default: 1MB

Benchmarks

Time to hash a 10GB file of /dev/urandom data

algo time (s)
adler32 8.02
crc32Castagnoli 6.60
crc32IEEE 4.99
crc32Koopman 6.18
crc64ECMA 5.54
crc64ISO 4.20
fnv32 4.15
fnv32a 4.14
fnv64 4.58
fnv64a 4.33
md5 19.01
murmur32 5.05
murmur64 5.36
sha1 13.07
sha256 18.14
sha512 18.10

Block size benchmarks

Raw data Benchmarks