Skip to content

Latest commit

 

History

History
642 lines (563 loc) · 25 KB

README.md

File metadata and controls

642 lines (563 loc) · 25 KB

enm is an Erlang port driver that wraps the nanomsg C library, allowing Erlang systems to communicate with other nanomsg endpoints. enm supports idioms and approaches common to standard Erlang networking facilities such as gen_tcp and gen_udp.

enm is currently based on version 0.4-beta of nanomsg, and enm itself is new, so its features are experimental and subject to change.

Starting and Stopping

You can start enm as a normal application, using application:start(enm) and application:stop(enm). You can also call enm:start_link/0 or enm:start/0, and call enm:stop/0 to stop it.

Just Open a Socket

enm supports all nanomsg scalability protocols and transports. You can open a socket providing a particular scalability protocol using functions named for each protocol. For example, the enm:pair/0 function opens a pair-type socket for one-to-one commucation, and the enm:req/0 and enm:rep/0 functions open the request and reply ends, respectively, of the reqrep scalability protocol. The arity 0 versions of the enm scalability protocol functions listed below use default settings for the open sockets, while the arity 1 versions allow a list of socket options to be passed to control socket settings.

  • req: open the request end of the reqrep protocol
  • rep: open the reply end of the reqrep protocol
  • pair: open a pair socket for one-to-one commucations
  • bus: open a bus socket for many-to-many communications
  • pub: open the publication end of the pubsub protocol
  • sub: open the subscriber end of the pubsub protocol
  • push: open the pushing end of the pipeline protocol
  • pull: open the pulling end of the pipeline protocol
  • surveyor: open the query end of the survey protocol
  • respondent: open the response end of the survey protocol

If successful, these functions — both their arity 0 and arity 1 versions — all return {ok,Socket}.

Once opened, sockets can be bound or connected using the enm:bind/2 or enm:connect/2 functions respectively. Bind and connect information can alternatively be provided via socket options when sockets are first opened via the functions listed above.

Functions

In addition to the scalability protocol functions, enm supports the following functions:

  • send(Socket, Data): send Data on Socket. Data is an Erlang iolist, thus allowing lists of binaries and characters, or nested lists thereof, to be sent.
  • recv(Socket): receive data from Socket. This function blocks indefinitely until data arrive. Returns {ok,Data} on success, or an error tuple on failure. Data defaults to a binary unless the socket was opened in list mode or was set into list mode via setopts/2.
  • recv(Socket, Timeout): same as recv/1 but if no data arrive within Timeout milliseconds, return {error,etimedout}.
  • bind(Socket, Address): bind Socket to Address, where Address supports one of the nanomsg transport types: inproc, ipc, or TCP. Address can be either a string or binary using the nanomsg URL address format, such as "inproc://foo" to bind to an intraprocess address or "tcp://*:12345" to listen on all your host's network interfaces on port 12345, or it can be one of the enm address record types.
  • getopts(Socket, Options): return the current setting on Socket for each of the option names listed in Options. If successful, returns {ok, OptionList} where each element of the list provides the name and setting of one of the requested options. If getopts fails it return an error tuple.
  • setopts(Socket, OptionList): apply each of the option settings in OptionList to Socket. Returns ok if successful or an error tuple on failure.
  • controlling_process(Socket, Pid): the current controlling process for Socket can call this function to transfer its control to the process represented by Pid. The controlling process of a Socket is initially the one that opens it, and it's the one that receives data messages as Erlang messages if the socket is in an active mode.
  • shutdown(Socket, EndpointId): removes the endpoint associated with EndpointId, created via bind/2 or connect/2, from Socket.
  • close(Socket): closes Socket.

If you're already familiar with standard Erlang networking capabilities, you'll find these functions similar to functions supplied by standard modules such as gen_tcp, gen_udp and inet.

Address Record Types

To help avoid errors with mistyped string and binary address URLs, enm provides three record types you can use for addresses instead:

  • #nn_inproc{addr=Address}: for intra-process addresses. Address is a name in either string or binary form.
  • #nn_ipc{path=Path}: for IPC addresses. Path can be either an absolute pathname or a pathname relative to the current working directory, in either string or binary form.
  • #nn_tcp{interface=Interface, addr=Address, port=Port}: for TCP addresses. Interface can be the atom any, a network address in string or tuple form, or a string representing a network interface name. Address can be a hostname or a network address in either string or binary form. Port is a port number.

Using these types, which is completely optional, requires including the enm.hrl file.

Socket Options

enm supports several socket options that can be set either when the socket is opened, or modified later during operation. Most socket options can also be read from enm sockets. enm supports the following options:

  • type: indicates the type of socket. For example, the nnreq type indicates a socket opened via the req function, and nnsurveyor indicates a socket implementing the query end of the survey protocol. This option can only be read from an enm socket and cannot be set.
  • active: this controls how messages are delivered from an enm socket to its controlling Erlang process.
    • The default setting, {active,true}, means that the driver reads data from the socket as soon as they arrive and sends them as Erlang messages to the controlling process.
    • The {active,false} setting puts an enm socket in passive mode; data from such a socket are retrieved only via the enm:recv/{1,2} functions.
    • The {active,once} setting allows the driver to deliver one message from the socket to the controlling process, after which the socket flips automatically to {active,false} mode. This allows the application to receive nanomsg messages as Erlang messages only when it's ready to handle them.
    • The {active,N} mode, where N represents an integer, is similar to {active,once} mode except that it allows the driver to receive N messages on the socket and deliver them as Erlang messages to the controlling process before flipping the socket into {active,false} mode. When the socket flips to passive mode, enm sends a {X_passive,Socket} message to the controlling process, with the socket's actual type name substituted for "X" (for example, {nnpair_passive, Socket} if Socket is a pair socket).
  • raw: this option, which defaults to false, controls whether the underlying nanomsg socket is opened with the AF_SP domain (the default, or set via {raw,false}) or the AF_SP_RAW domain (set via {raw,true}). Using the atom raw by itself is equivalent to {raw,true}. See the nanomsg nn_socket man page for more details on the AF_SP and AF_SP_RAW socket domains.
  • mode: this controls the form of the data delivered or retrieved from the socket. The default, binary, means that data from the socket are delivered to the application as Erlang binaries, whereas the list setting means socket data are delivered as Erlang lists. Using the atom binary by itself is equivalent to {mode,binary}, and list by itself is equivalent to {mode,list}.
  • bind: this option allows you to open a socket and then immediately bind it to the given address. See the bind function description for more details on the allowable forms for the bind address. Note, however, that the bind endpoint identifier is thrown away in this case. If you need to later manage the endpoint via shutdown, use the bind function instead.
  • connect: this option allows you open a socket and then immediately connect it to the given address. See the connect function description for more details on the allowable forms for the connect address. Note, however, that the connect endpoint identifier is thrown away in this case. If you need to later manage the endpoint via shutdown, use the connect function instead.
  • deadline: for surveyor sockets, set the surveyor deadline to specify how long, in milliseconds, to wait for responses to arrive.
  • subscribe: for sub sockets, subscribe to the named topic, specified either as a string or a binary. Topic names must be less than 256 characters in length (this is an enm limit, not a nanomsg limit). Applying the subscribe option to a socket type other than sub results in a badarg exception.
  • unsubscribe: for sub sockets, unsubscribe from the named topic, specified either as a string or a binary. As for the subscribe option, topic names must be less than 256 characters in length. Applying the unsubscribe option to a socket type other than sub results in a badarg exception.
  • resend_ivl: for req sockets, set the request resend interval to specify how long, in milliseconds, to wait for a reply before resending the request. The default is 60000. Applying the resend_ivl option to a socket type other than req results in a badarg exception.
  • sndbuf: set the send buffer size to the specified number of bytes. Applying this option to a socket that doesn't allow sending, specifically a pull or sub socket, results in a badarg exception.
  • rcvbuf: set the receive buffer size to the specified number of bytes. Applying this option to a socket that doesn't allow receiving, specifically a push or pub socket, results in a badarg exception.
  • nodelay: if true, set the TCP_NODELAY option on TCP sockets, or if false, clear it.

Currently, most but not all nanomsg socket options are implemented. Please file an issue or submit a pull request if an option you need is missing.

Examples

These following examples are based on Tim Dysinger's C examples, but they produce somewhat different output. They are all run with inproc addresses, thereby taking advantage of Erlang's lightweight processes rather than using separate OS processes as for Tim's examples (though we could easily do that with Erlang too).

Note also that each example explicitly starts and stops enm — this is for exposition only, and is not something you'd do explicitly in an actual Erlang application. The output shown comes from an interactive Erlang shell, and it assumes enm beam files are on the shell's load path.

You can find the code for these examples in the repository examples directory.

Pipeline

-module(pipeline).
-export([start/0]).

start() ->
    enm:start_link(),
    Url = "inproc://pipeline",
    {ok,Pull} = enm:pull([{bind,Url},list]),
    {ok,Push} = enm:push([{connect,Url},list]),
    Send1 = "Hello, World!",
    io:format("pushing message \"~s\"~n", [Send1]),
    ok = enm:send(Push, Send1),
    receive
        {nnpull,Pull,Send1} ->
            io:format("pulling message \"~s\"~n", [Send1])
    end,
    Send2 = "Goodbye.",
    io:format("pushing message \"~s\"~n", [Send2]),
    ok = enm:send(Push, Send2),
    receive
        {nnpull,Pull,Send2} ->
            io:format("pulling message \"~s\"~n", [Send2])
    end,
    enm:close(Push),
    enm:close(Pull),
    enm:stop().

Here, note the pattern matching in the receive statements where we use the data variables set for the sent messages as the data to be expected to be received. We put each socket into list mode to ensure these pattern matches succeed, given that Send1 and Send2 are strings. Note also that both the type of the socket and the socket itself are part of the received messages, allowing us to use matching to easily distinguish between what each socket is receiving. If these expected patterns did not match what was being sent, the receive statements would wait forever.

Pipeline Results

1> c("examples/pipeline.erl", [{o,"examples"}]).
{ok,pipeline}
2> pipeline:start().
pushing message "Hello, World!"
pulling message "Hello, World!"
pushing message "Goodbye."
pulling message "Goodbye."
ok

Request/Reply

-module(request_reply).
-export([start/0]).

start() ->
    enm:start_link(),
    Url = "inproc://request_reply",
    {ok,Rep} = enm:rep([{bind,Url}]),
    {ok,Req} = enm:req([{connect,Url}]),
    DateReq = <<"DATE">>,
    io:format("sending date request~n"),
    ok = enm:send(Req, DateReq),
    receive
        {nnrep,Rep,DateReq} ->
            io:format("received date request~n"),
            Now = httpd_util:rfc1123_date(),
            io:format("sending date ~s~n", [Now]),
            ok = enm:send(Rep, Now)
    end,
    receive
        {nnreq,Req,Date} ->
            io:format("received date ~s~n", [Date])
    end,
    enm:close(Req),
    enm:close(Rep),
    enm:stop().

This is similar to the pipeline example except that data flows in both directions, and both sockets default to binary mode.

Request/Reply Results

1> c("examples/request_reply.erl", [{o,"examples"}]).
{ok,request_reply}
2> request_reply:start().
sending date request
received date request
sending date Tue, 09 Sep 2014 23:05:26 GMT
received date Tue, 09 Sep 2014 23:05:26 GMT
ok

Pair

-module(pair).
-export([start/0, node/4]).

start() ->
    enm:start_link(),
    Self = self(),
    Url = "inproc://pair",
    spawn(?MODULE, node, [Self, Url, bind, "Node0"]),
    spawn(?MODULE, node, [Self, Url, connect, "Node1"]),
    collect(["Node0","Node1"]).

node(Parent, Url, F, Name) ->
    {ok,P} = enm:pair([{active,3}]),
    {ok,Id} = enm:F(P,Url),
    send_recv(P, Name),
    enm:shutdown(P, Id),
    Parent ! {done,Name}.

send_recv(Sock, Name) ->
    receive
        {_,Sock,Buf} ->
            io:format("~s received \"~s\"~n", [Name, Buf])
    after
        100 ->
            ok
    end,
    case enm:getopts(Sock, [active]) of
        {ok, [{active,false}]} ->
            ok;
        {error, Error} ->
            error(Error);
        _ ->
            timer:sleep(1000),
            io:format("~s sending \"~s\"~n", [Name, Name]),
            ok = enm:send(Sock, Name),
            send_recv(Sock, Name)
    end.

collect([]) ->
    ok;
collect([Name|Names]) ->
    receive
        {done,Name} ->
            collect(Names)
    end.

This code is a little more involved than previous examples because we spawn two child processes that receive and send messages. Note how we use the {active,N} socket mode for each end of the pair to eventually break out of the recursive send_recv/2 function, by using enm:getopts/2 to check for when each socket flips into {active,false} mode.

Pair Results

1> c("examples/pair.erl",[{o,"examples"}]).
{ok,pair}
2> pair:start().
Node0 sending "Node0"
Node1 sending "Node1"
Node0 received "Node1"
Node1 received "Node0"
Node1 sending "Node1"
Node0 sending "Node0"
Node0 received "Node1"
Node1 received "Node0"
Node1 sending "Node1"
Node0 sending "Node0"
Node0 received "Node1"
Node1 received "Node0"
ok

Pub/Sub

-module(pubsub).
-export([start/0]).

-define(COUNT, 3).

start() ->
    enm:start_link(),
    Url = "inproc://pubsub",
    Pub = pub(Url),
    collect(subs(Url, self())),
    enm:close(Pub),
    enm:stop().

pub(Url) ->
    {ok,Pub} = enm:pub([{bind,Url}]),
    spawn_link(fun() -> pub(Pub, ?COUNT) end),
    Pub.
pub(_, 0) ->
    ok;
pub(Pub, Count) ->
    Now = httpd_util:rfc1123_date(),
    io:format("publishing date \"~s\"~n", [Now]),
    ok = enm:send(Pub, ["DATE: ", Now]),
    timer:sleep(1000),
    pub(Pub, Count-1).

subs(Url, Parent) ->
    subs(Url, Parent, ?COUNT, []).
subs(_, _, 0, Acc) ->
    Acc;
subs(Url, Parent, Count, Acc) ->
    {ok, Sub} = enm:sub([{connect,Url},{subscribe,"DATE:"},{active,false}]),
    Name = "Subscriber" ++ integer_to_list(Count),
    spawn_link(fun() -> sub(Sub, Parent, Name) end),
    subs(Url, Parent, Count-1, [Name|Acc]).
sub(Sub, Parent, Name) ->
    case enm:recv(Sub, 2000) of
        {ok,Data} ->
            io:format("~s received \"~s\"~n", [Name, Data]),
            sub(Sub, Parent, Name);
        {error,etimedout} ->
            enm:close(Sub),
            Parent ! {done, Name},
            ok
    end.

collect([Sub|Subs]) ->
    receive
        {done,Sub} ->
            collect(Subs)
    end;
collect([]) ->
    ok.

This code sets up a publisher and 3 subscribers, and the publisher publishes dates to the subscribers. It includes the text "DATE:" in each message, and messages containing that text are what the subscribers are looking to receive. Note the use of {active,false} mode for the subscriber sockets; this is done because the Erlang process that creates the sockets, known as the controlling process for the socket, is not the same process that receives the messages. Only the controlling process can receive messages in an active mode from a socket.

Pub/Sub Results

1> c("examples/pubsub.erl", [{o,"examples"}]).
{ok,pubsub}
2> pubsub:start().
publishing date "Tue, 09 Sep 2014 23:08:10 GMT"
Subscriber3 received "DATE: Tue, 09 Sep 2014 23:08:10 GMT"
Subscriber2 received "DATE: Tue, 09 Sep 2014 23:08:10 GMT"
Subscriber1 received "DATE: Tue, 09 Sep 2014 23:08:10 GMT"
publishing date "Tue, 09 Sep 2014 23:08:11 GMT"
Subscriber3 received "DATE: Tue, 09 Sep 2014 23:08:11 GMT"
Subscriber2 received "DATE: Tue, 09 Sep 2014 23:08:11 GMT"
Subscriber1 received "DATE: Tue, 09 Sep 2014 23:08:11 GMT"
publishing date "Tue, 09 Sep 2014 23:08:12 GMT"
Subscriber3 received "DATE: Tue, 09 Sep 2014 23:08:12 GMT"
Subscriber2 received "DATE: Tue, 09 Sep 2014 23:08:12 GMT"
Subscriber1 received "DATE: Tue, 09 Sep 2014 23:08:12 GMT"
ok

Survey

-module(survey).
-export([start/0]).

-define(COUNT, 3).

start() ->
    enm:start_link(),
    Url = "inproc://survey",
    Self = self(),
    {ok,Survey} = enm:surveyor([{bind,Url},{deadline,3000}]),
    Clients = clients(Url, Self),
    ok = enm:send(Survey, httpd_util:rfc1123_date()),
    get_responses(Survey),
    wait_for_clients(Clients),
    enm:close(Survey),
    enm:stop().

clients(Url, Parent) ->
    clients(Url, Parent, ?COUNT, []).
clients(_, _, 0, Acc) ->
    Acc;
clients(Url, Parent, Count, Acc) ->
    {ok, Respondent} = enm:respondent([{connect,Url},{active,false},list]),
    Name = "Respondent" ++ integer_to_list(Count),
    Pid = spawn_link(fun() -> client(Respondent, Name, Parent) end),
    clients(Url, Parent, Count-1, [Pid|Acc]).

client(Respondent, Name, Parent) ->
    {ok,Msg} = enm:recv(Respondent, 5000),
    Date = httpd_util:convert_request_date(Msg),
    ok = enm:send(Respondent, term_to_binary(Date)),
    io:format("~s got \"~s\"~n", [Name, Msg]),
    Parent ! {done, self(), Respondent}.

get_responses(Survey) ->
    get_responses(Survey, ?COUNT+1).
get_responses(_, 0) ->
    ok;
get_responses(Survey, Count) ->
    receive
        {nnsurveyor,Survey,BinResp} ->
            Response = binary_to_term(BinResp),
            io:format("received survey response ~p~n", [Response]);
        {nnsurveyor_deadline,Survey} ->
            io:format("survey has expired~n")
    end,
    get_responses(Survey, Count-1).

wait_for_clients([Client|Clients]) ->
    receive
        {done,Client,Respondent} ->
            enm:close(Respondent),
            wait_for_clients(Clients)
    end;
wait_for_clients([]) ->
    ok.

This example creates a surveyor, and several respondents connect to it. The {deadline,3000} option used when creating the surveyor socket means respondents have a maximum of 3 seconds to respond to any survey. The surveyor sends out the survey, and then collects responses from each of the respondents. When we hit the survey deadline, the controlling process for the surveyor socket gets a {nnsurveyor_deadline,Socket} message.

Survey Results

1> c("examples/survey.erl", [{o,"examples"}]).
{ok,survey}
2> survey:start().
Respondent3 got "Tue, 09 Sep 2014 23:09:34 GMT"
Respondent2 got "Tue, 09 Sep 2014 23:09:34 GMT"
Respondent1 got "Tue, 09 Sep 2014 23:09:34 GMT"
received survey response {{2014,9,9},{23,9,34}}
received survey response {{2014,9,9},{23,9,34}}
received survey response {{2014,9,9},{23,9,34}}
survey has expired
ok

Bus

-module(bus).
-export([start/0]).

-define(COUNT, 4).

start() ->
    enm:start_link(),
    UrlBase = "inproc://bus",
    Buses = connect_buses(UrlBase),
    Pids = send_and_receive(Buses, self()),
    wait_for_pids(Pids),
    enm:stop().

connect_buses(UrlBase) ->
    connect_buses(UrlBase, lists:seq(1,?COUNT), []).
connect_buses(UrlBase, [1=Node|Nodes], Buses) ->
    Url = make_url(UrlBase, Node),
    {ok,Bus} = enm:bus([{bind,Url},{active,false}]),
    {ok,_} = enm:connect(Bus, make_url(UrlBase, 2)),
    {ok,_} = enm:connect(Bus, make_url(UrlBase, 3)),
    connect_buses(UrlBase, Nodes, [{Bus,Node}|Buses]);
connect_buses(UrlBase, [?COUNT=Node|Nodes], Buses) ->
    Url = make_url(UrlBase, Node),
    {ok,Bus} = enm:bus([{bind,Url},{active,false}]),
    {ok,_} = enm:connect(Bus, make_url(UrlBase, 1)),
    connect_buses(UrlBase, Nodes, [{Bus,Node}|Buses]);
connect_buses(UrlBase, [Node|Nodes], Buses) ->
    Url = make_url(UrlBase, Node),
    {ok,Bus} = enm:bus([{bind,Url},{active,false}]),
    Urls = [make_url(UrlBase,N) || N <- lists:seq(Node+1,?COUNT)],
    [{ok,_} = enm:connect(Bus,U) || U <- Urls],
    connect_buses(UrlBase, Nodes, [{Bus,Node}|Buses]);
connect_buses(_, [], Buses) ->
    Buses.

send_and_receive(Buses, Parent) ->
    send_and_receive(Buses, Parent, []).
send_and_receive([{Bus,Id}|Buses], Parent, Acc) ->
    Pid = spawn_link(fun() -> bus(Bus, Id, Parent) end),
    send_and_receive(Buses, Parent, [Pid|Acc]);
send_and_receive([], _, Acc) ->
    Acc.

bus(Bus, Id, Parent) ->
    Name = "node"++integer_to_list(Id),
    io:format("node ~w sending \"~s\"~n", [Id, Name]),
    ok = enm:send(Bus, Name),
    collect(Bus, Id, Parent).

collect(Bus, Id, Parent) ->
    case enm:recv(Bus, 1000) of
        {ok,Data} ->
            io:format("node ~w received \"~s\"~n", [Id, Data]),
            collect(Bus, Id, Parent);
        {error,etimedout} ->
            Parent ! {done, self(), Bus}
    end.

wait_for_pids([Pid|Pids]) ->
    receive
        {done,Pid,Bus} ->
            enm:close(Bus),
            wait_for_pids(Pids)
    end;
wait_for_pids([]) ->
    ok.

make_url(Base,N) ->
    Base++integer_to_list(N).

In this example consisting of four nodes, each node is connected such that it receives one message from each of the other nodes. Each node binds to one bus address and connects to one or more of the other bus addresses — for example, node 1 connects to nodes 2 and 3, and node 4 connects only to node 1. This example uses {active,false} mode since the Erlang processes calling enm:recv/2 are not the controlling processes for the receiving sockets.

Bus Results

1> c("examples/bus", [{o,"examples"}]).
{ok,bus}
2> bus:start().
node 4 sending "node4"
node 3 sending "node3"
node 2 sending "node2"
node 1 sending "node1"
node 3 received "node4"
node 2 received "node4"
node 1 received "node4"
node 4 received "node3"
node 3 received "node2"
node 2 received "node3"
node 1 received "node3"
node 4 received "node2"
node 3 received "node1"
node 2 received "node1"
node 1 received "node2"
node 4 received "node1"
ok