-
Notifications
You must be signed in to change notification settings - Fork 10
/
EEPROMUtils.h
305 lines (245 loc) · 7.38 KB
/
EEPROMUtils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#ifndef __EEPROMUtils_h
#define __EEPROMUtils_h
#include <Arduino.h>
#include <EEPROM.h>
//
// Absolute min and max eeprom addresses.
// Actual values are hardware-dependent.
//
// These values can be changed e.g. to protect
// eeprom cells outside this range.
//
#define EEPROM_MIN_ADDR 0
#define EEPROM_MAX_ADDR 511
//
// Initialize eeprom memory with
// the specified byte.
// Default value is 0xFF.
//
inline void eeprom_erase_all(byte b = 0xFF) {
int i;
for (i = EEPROM_MIN_ADDR; i <= EEPROM_MAX_ADDR; i++) {
EEPROM.write(i, b);
}
}
//
// Dump eeprom memory contents over serial port.
// For each byte, address and value are written.
//
inline void eeprom_serial_dump_column(void) {
// counter
int i;
// byte read from eeprom
byte b;
// buffer used by sprintf
char buf[10];
for (i = EEPROM_MIN_ADDR; i <= EEPROM_MAX_ADDR; i++) {
b = EEPROM.read(i);
sprintf(buf, "%03X: %02X", i, b);
//Serial.println(buf);
}
}
//
// Dump eeprom memory contents over serial port in tabular form.
// Each printed row shows the value of bytesPerRow bytes
// (by default 16).
//
inline void eeprom_serial_dump_table(int bytesPerRow = 16) {
// address counter
int i;
// row bytes counter
int j;
// byte read from eeprom
byte b;
// temporary buffer for sprintf
char buf[10];
// initialize row counter
j = 0;
// go from first to last eeprom address
for (i = EEPROM_MIN_ADDR; i <= EEPROM_MAX_ADDR; i++) {
// if this is the first byte of the row,
// start row by printing the byte address
if (j == 0) {
sprintf(buf, "%03X: ", i);
//Serial.print(buf);
}
// read current byte from eeprom
b = EEPROM.read(i);
// write byte in hex form
sprintf(buf, "%02X ", b);
// increment row counter
j++;
// if this is the last byte of the row,
// reset row counter and use println()
// to start a new line
if (j == bytesPerRow) {
j = 0;
//Serial.println(buf);
}
// else just print the hex value with print()
else {
//Serial.print(buf);
}
}
}
//
// Returns true if the address is between the
// minimum and maximum allowed values,
// false otherwise.
//
// This function is used by the other, higher-level functions
// to prevent bugs and runtime errors due to invalid addresses.
//
inline boolean eeprom_is_addr_ok(int addr) {
return ((addr >= EEPROM_MIN_ADDR) && (addr <= EEPROM_MAX_ADDR));
}
//
// Writes a sequence of bytes to eeprom starting at the specified address.
// Returns true if the whole array is successfully written.
// Returns false if the start or end addresses aren't between
// the minimum and maximum allowed values.
// When returning false, nothing gets written to eeprom.
//
inline boolean eeprom_write_bytes(int startAddr, const byte* array, int numBytes) {
// counter
int i;
// both first byte and last byte addresses must fall within
// the allowed range
if (!eeprom_is_addr_ok(startAddr) || !eeprom_is_addr_ok(startAddr + numBytes)) {
return false;
}
for (i = 0; i < numBytes; i++) {
EEPROM.write(startAddr + i, array[i]);
}
return true;
}
//
// Reads the specified number of bytes from the specified address into the provided buffer.
// Returns true if all the bytes are successfully read.
// Returns false if the star or end addresses aren't between
// the minimum and maximum allowed values.
// When returning false, the provided array is untouched.
//
// Note: the caller must ensure that array[] has enough space
// to store at most numBytes bytes.
//
inline boolean eeprom_read_bytes(int startAddr, byte array[], int numBytes) {
int i;
// both first byte and last byte addresses must fall within
// the allowed range
if (!eeprom_is_addr_ok(startAddr) || !eeprom_is_addr_ok(startAddr + numBytes)) {
return false;
}
for (i = 0; i < numBytes; i++) {
array[i] = EEPROM.read(startAddr + i);
}
return true;
}
//
// Writes an int variable at the specified address.
// Returns true if the variable value is successfully written.
// Returns false if the specified address is outside the
// allowed range or too close to the maximum value
// to store all of the bytes (an int variable requires
// more than one byte).
//
inline boolean eeprom_write_int(int addr, int value) {
byte *ptr;
ptr = (byte*)&value;
return eeprom_write_bytes(addr, ptr, sizeof(value));
}
//
// Reads an integer value at the specified address.
// Returns true if the variable is successfully read.
// Returns false if the specified address is outside the
// allowed range or too close to the maximum vlaue
// to hold all of the bytes (an int variable requires
// more than one byte).
//
inline boolean eeprom_read_int(int addr, int* value) {
return eeprom_read_bytes(addr, (byte*)value, sizeof(int));
}
//
// Writes a string starting at the specified address.
// Returns true if the whole string is successfully written.
// Returns false if the address of one or more bytes
// fall outside the allowed range.
// If false is returned, nothing gets written to the eeprom.
//
inline boolean eeprom_write_string(int addr, const char* string) {
// actual number of bytes to be written
int numBytes;
// we'll need to write the string contents
// plus the string terminator byte (0x00)
numBytes = strlen(string) + 1;
return eeprom_write_bytes(addr, (const byte*)string, numBytes);
}
//
// Reads a string starting from the specified address.
// Returns true if at least one byte (even only the
// string terminator one) is read.
// Returns false if the start address falls outside
// or declare buffer size os zero.
// the allowed range.
// The reading might stop for several reasons:
// - no more space in the provided buffer
// - last eeprom address reached
// - string terminator byte (0x00) encountered.
// The last condition is what should normally occur.
//
inline boolean eeprom_read_string(int addr, char* buffer, int bufSize) {
// byte read from eeprom
byte ch;
// number of bytes read so far
int bytesRead;
// check start address
if (!eeprom_is_addr_ok(addr)) {
return false;
}
// how can we store bytes in an empty buffer ?
if (bufSize == 0) {
return false;
}
// is there is room for the string terminator only,
// no reason to go further
if (bufSize == 1) {
buffer[0] = 0;
return true;
}
// initialize byte counter
bytesRead = 0;
// read next byte from eeprom
ch = EEPROM.read(addr + bytesRead);
// store it into the user buffer
buffer[bytesRead] = ch;
// increment byte counter
bytesRead++;
// stop conditions:
// - the character just read is the string terminator one (0x00)
// - we have filled the user buffer
// - we have reached the last eeprom address
while ( (ch != 0x00) && (bytesRead < bufSize) && ((addr + bytesRead) <= EEPROM_MAX_ADDR) ) {
// if no stop condition is met, read the next byte from eeprom
ch = EEPROM.read(addr + bytesRead);
// store it into the user buffer
buffer[bytesRead] = ch;
// increment byte counter
bytesRead++;
}
// make sure the user buffer has a string terminator
// (0x00) as its last byte
if ((ch != 0x00) && (bytesRead >= 1)) {
buffer[bytesRead - 1] = 0;
}
return true;
}
static uint32_t ntoi(uint8_t *buf) {
return static_cast<uint32_t>(buf[2]) << 24
| static_cast<uint32_t>(buf[1]) << 16
| static_cast<uint32_t>(buf[0]) << 8
| buf[3];
}
static uint16_t ntos(uint8_t *buf) {
return static_cast<uint16_t>(buf[0]) << 8 | buf[1];
}
#endif