Skip to content

Latest commit

 

History

History
233 lines (144 loc) · 5.9 KB

README.md

File metadata and controls

233 lines (144 loc) · 5.9 KB
title
GibbsTypePriors.jl

Lifecycle

Build Status codecov Coverage Status

Computing clusters prior distribution for Gibbs-type processes.

Introduction

The following reference gives an overview of Gibbs-type priors and their importance for Bayesian Nonparametrics:

De Blasi, Pierpaolo, Stefano Favaro, Antonio Lijoi, Ramsés H. Mena, Igor Prünster, and Matteo Ruggiero. “Are Gibbs-Type Priors the Most Natural Generalization of the Dirichlet Process?” IEEE Transactions on Pattern Analysis and Machine Intelligence 37, no. 2 (2015): 212–29. https://doi.org/10.1109/TPAMI.2013.217.

An application of the functions implemented in this package was presented here:

Bystrova, D., Arbel, J., Kon Kam King, G., Deslandes, F. (2021) Approximating the clusters' prior distribution in Bayesian nonparametric models, Third Symposium on Advances in Approximate Bayesian Inference, https://openreview.net/forum?id=J0SSW5XeWUY

Please cite it as a reference if you use the package.

How to install the package

The package is developed for Julia 1.5. Much of its functionality rests on the 'Arb' package[1], via its interface in Nemo.jl.

Press ] in the Julia interpreter to enter the Pkg mode and input:

pkg> add https://github.com/konkam/GibbsTypePriors

Alternatively, you may run:

julia> using Pkg; Pkg.add(url = "https://github.com/konkam/GibbsTypePriors")

How to use the package

To compute the prior density at clusters of size k=10 for a Normalized Generalised Gamma process of parameters σ=0.8, β = 1.2 and n = 500 data points, use:

using GibbsTypePriors
Pkn_NGG(10, 500, 1.2, 0.8)
8.984618037609138e-11

The same may be done for the 2-parameter Poisson Dirichlet, also named the Pitman-Yor process:

Pkn_PY(10, 500, 1.2, 0.8)
2.562372640654159e-5

We also provide the same function for the Dirichlet process:

Pkn_Dirichlet(10, 500, 1.2)
0.09844487393917364

Illustration of the various priors:

The following figure shows a comparison of the priors distribution on the number of clusters induced by a Dirichlet process, a 2-parameter Poisson-Dirichlet process and a Normalised Inverse Gamma process.

using GibbsTypePriors, DataFrames, DataFramesMeta, RCall
R"library(tidyverse)"

R"p = ggplot(data.frame(x = 1:50,
                        Pkn_NGG = $(Pkn_NGG.(1:50, 50, 48.4185, 0.25)),
                        Pkn_NGG2 = $(Pkn_NGG.(1:50, 50, 1., 0.7353)),
                        Pkn_Dirichlet = $(Pkn_Dirichlet.(1:50, 50, 19.233)),
                        Pkn_2PD = $(Pkn_2PD.(1:50, 50, 12.2157, 0.25)),
                        Pkn_2PD2 = $(Pkn_2PD.(1:50, 50, 1., 0.73001))
                    ) %>%
            gather(Process_type, density, Pkn_NGG:Pkn_2PD2),
    aes(x=x, y = density, colour = Process_type)) +
geom_line() +
ggthemes::scale_colour_ptol() +
theme_minimal()"
R"png('Illustration.png')
plot(p)
dev.off()"

References: [1] Johansson, F. (2017). Arb: efficient arbitrary-precision midpoint-radius interval arithmetic.IEEE Transactions on Computers, 66:1281–1292.

Appendix

Varying the precision of the calculation

For experimental purposes or if you happen to reach the limits of numerical accuracy with the default precision of the package (5000 bits), we provide special functions allowing to change the number of bits used for the computation:

using Nemo
GibbsTypePriors.Cnk(6, 5, 0.5) |> Nemo.accuracy_bits
4997
GibbsTypePriors.Cnk(6, 5, 0.5, 200) |> Nemo.accuracy_bits
197
GibbsTypePriors.Vnk_NGG(100,50, 0.5, 0.2) |> Nemo.accuracy_bits
4992
GibbsTypePriors.Vnk_NGG(100,50, 0.5, 0.2, 200) |> Nemo.accuracy_bits
192
GibbsTypePriors.Pkn_NGG_arb(50, 100, 0.5, 0.2) |> Nemo.accuracy_bits
4913
GibbsTypePriors.Pkn_NGG_arb(50, 100, 0.5, 0.2, 200) |> Nemo.accuracy_bits
112

Instability of the $V_{n,k}$

using GibbsTypePriors, Nemo, DataFrames, DataFramesMeta, RCall
β = 0.5
σ = 0.2
to_plot = [[(n,k) for k in 1:2:n]  for n in 1:2:100] |>
  l -> vcat(l...) |>
  ar -> [DataFrame(n = val[1], k = val[2], acc = GibbsTypePriors.Vnk_NGG(val[1], val[2], β, σ, 200) |> Nemo.accuracy_bits) for val in ar] |>
  l -> vcat(l...)

R"library(tidyverse)"
p = R"$to_plot %>%
    as_tibble %>%
    mutate(Acceptable = factor(acc < 64, levels = c(TRUE, FALSE))) %>%
    ggplot(aes(x = n, y = k, fill = acc, alpha = Acceptable)) + 
      geom_tile(colour = 'white') + 
      theme_bw() + 
      scale_fill_gradient(name = 'Accuracy') + 
      ggtitle('Vnk')"
R"png('figures/Vnk_instability.png')
  plot($p)
  dev.off()"

Accuracy (bits) of the computed $V_{n,k}$ as a function of $n$ and $k$. The computations are carried out using 200 bits of precision. Light coloured areas correspond to where the precision decreases below 64 bits.