forked from shimisalant/RaSoR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
66 lines (50 loc) · 2.33 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np
from collections import namedtuple
EpochResult = namedtuple('EpochResult', [
'trn_loss', 'trn_acc',
'dev_loss', 'dev_acc', 'dev_em', 'dev_f1'])
def _format_epoch_result(epoch_title, epoch_idx, er):
return ('{:<10s} {:<6s} : '
'trn: loss={:<5.3f} acc={:<6.3f} '
'dev: loss={:<5.3f} acc={:<6.3f} '
'em={:<6.3f} f1={:<6.3f}').format(
epoch_title, '(e'+str(epoch_idx+1)+')',
er.trn_loss, 100*er.trn_acc,
er.dev_loss, 100*er.dev_acc,
100*er.dev_em, 100*er.dev_f1)
def format_epoch_results(epoch_results):
idx_last = len(epoch_results) - 1
idx_best_em = np.argmax([er.dev_em for er in epoch_results])
idx_best_f1 = np.argmax([er.dev_f1 for er in epoch_results])
return '\n'.join([
_format_epoch_result('Last epoch', idx_last, epoch_results[idx_last]),
_format_epoch_result('Best EM', idx_best_em, epoch_results[idx_best_em]),
_format_epoch_result('Best F1', idx_best_f1, epoch_results[idx_best_f1])])
def _plot_series(ax, x, y, color, label, is_argmin):
ax.plot(x, y, color=color, label=label)
idx = np.argmin(y) if is_argmin else np.argmax(y)
ax.plot(x[idx], y[idx], color=color, marker='o', label=None)
def plot_epoch_results(epoch_results, filename):
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
trn_losses = [er.trn_loss for er in epoch_results]
trn_accs = [er.trn_acc for er in epoch_results]
dev_losses = [er.dev_loss for er in epoch_results]
dev_accs = [er.dev_acc for er in epoch_results]
dev_ems = [er.dev_em for er in epoch_results]
dev_f1s = [er.dev_f1 for er in epoch_results]
epoch_nums = range(1, len(epoch_results)+1)
fig, axarr = plt.subplots(2, sharex=True, figsize=(12, 9))
axarr[1].set_xlabel('epoch')
_plot_series(axarr[0], epoch_nums, trn_losses, 'blue', 'train loss', True)
_plot_series(axarr[0], epoch_nums, dev_losses, 'red', 'dev loss', True)
axarr[0].legend(loc='upper right', prop={'size':12})
_plot_series(axarr[1], epoch_nums, trn_accs, 'blue', 'train acc', False)
_plot_series(axarr[1], epoch_nums, dev_accs, 'red', 'dev acc', False)
_plot_series(axarr[1], epoch_nums, dev_ems, 'pink', 'dev em', False)
_plot_series(axarr[1], epoch_nums, dev_f1s, 'cyan', 'dev f1', False)
axarr[1].legend(loc='lower right', prop={'size':12})
plt.tight_layout()
plt.savefig(filename)
plt.close(fig)