Skip to content

Latest commit

 

History

History
62 lines (43 loc) · 2.65 KB

README.md

File metadata and controls

62 lines (43 loc) · 2.65 KB

DiRect globalizer problem

Проект представляет из себя пример запуска direct на задачах globalizer

directPM.cpp - пример c main функцией

Grishagin и Rastrigin2 - примеры задач, собираются в dll.

Проект direct_opt_test - принимает в качестве аргументов командной строки путь до dll задачей.

Пример командной строки для запуска задачи Гришагина ..\bin\grishagin.dll ..\Grishagin\grishagin_conf.xml

Пример командной строки для запуска задачи Гришагина: ..\bin\ra.dll

Для сборки проекта с помощью cmake запустите gen.bat. Также присутствует собранный проект под Visual Studio 2010 - DiRect10 и Visual Studio 2013 - DiRect

Original source https://github.com/rlnx/DiRect

Original source nlopt.

Original README

The DIRECT algorithm (DIviding RECTangles) is a derivative-free global optimization algorithm invented by Jones et al.:

D. R. Jones, C. D. Perttunen, and B. E. Stuckmann,
"Lipschitzian optimization without the lipschitz constant,"
J. Optimization Theory and Applications, vol. 79, p. 157 (1993).

This is a deterministic-search algorithm based on systematic division of the search domain into smaller and smaller hyperrectangles.

The implementation is based on the 1998-2001 Fortran version by J. M. Gablonsky at North Carolina State University, converted to C by Steven G. Johnson. The Fortran source was downloaded from:

http://www4.ncsu.edu/~ctk/SOFTWARE/DIRECTv204.tar.gz

Gablonsky et al implemented a modified version of the original DIRECT algorithm, as described in:

J. M. Gablonsky and C. T. Kelley, "A locally-biased form
of the DIRECT algorithm," J. Global Optimization 21 (1),
p. 27-37 (2001).

Both the original Jones algorithm (NLOPT_GLOBAL_DIRECT) and the Gablonsky modified version (NLOPT_GLOBAL_DIRECT_L) are implemented and available from the NLopt interface. The Gablonsky version makes the algorithm "more biased towards local search" so that it is more efficient for functions without too many local minima.

Also, Gablonsky et al. extended the algorithm to handle "hidden constraints", i.e. arbitrary nonlinear constraints. In NLopt, a hidden constraint is represented by returning NaN (or Inf, or HUGE_VAL) from the objective function at any points violating the constraint.

Further information on the DIRECT algorithm and Gablonsky's implementation can be found in the included userguide.pdf file.