-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsubmit_job.py
executable file
·67 lines (54 loc) · 2.13 KB
/
submit_job.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#!/g/kreshuk/lukoianov/miniconda3/envs/inferno/bin/python3
# DEFAULT SETTINGS
PROJECT = '_centrioles_detection'
GROUP_NAME = 'kreshuk'
EMAIL = 'artem.lukoianov@embl.de'
MEMORY = 80
TIME_LIMIT = 100
ID = 'default'
MAIL_TYPE = 'NONE'
RUNNING_COMAND = './run_ilc_1ch.py'
ADDITIONAL_MODULES = 'module load cuDNN'
ARGUMENTS_FOR_RUN = ''
slurm_script_template = \
'''#!/bin/bash
#SBATCH -J {}_{}{}
#SBATCH -A {}
#SBATCH -N 1
#SBATCH -n 3
#SBATCH --mem {}G
#SBATCH -t {}:00:00
#SBATCH -o {}/outfile.log
#SBATCH -e {}/errfile.log
#SBATCH --mail-type={}
#SBATCH --mail-user={}
#SBATCH -p gpu
#SBATCH -C gpu=1080Ti
#SBATCH --gres=gpu:1
'''
import argparse
import os
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Submit job to the cluster')
parser.add_argument('--id', type=str, default=ID,
help='Id of ')
parser.add_argument('--mem', type=int, default=MEMORY, dest='mem',
help='Amount of RAM to be reserved')
parser.add_argument('--model_name', type=str, default='',
help='Name of the model from the list of implemented models')
parser.add_argument('--time', type=int, default=TIME_LIMIT, dest='time',
help='Time limit for the script execution')
args, unknown = parser.parse_known_args()
kargs = ARGUMENTS_FOR_RUN + ' --id ' + args.id + ' --model_name ' + args.model_name + ' ' + ' '.join(unknown)
parent_dir = 'models/{}/{}'.format(args.model_name, args.id)
if os.path.exists(parent_dir):
print('Directory already exists! Aborting')
exit()
os.makedirs(parent_dir)
bash_script_text = slurm_script_template.format(args.id, args.model_name, PROJECT, GROUP_NAME, args.mem, args.time,
parent_dir, parent_dir, MAIL_TYPE, EMAIL) + '\n' +\
ADDITIONAL_MODULES + '\n' + RUNNING_COMAND + ' ' + kargs
with open('slurm_script.sh', 'w') as f:
print(bash_script_text, file=f)
os.system('rm -rf {}logs'.format(parent_dir))
os.system('sbatch slurm_script.sh')