-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvad_init_rpca_CMT.py
324 lines (253 loc) · 13.5 KB
/
vad_init_rpca_CMT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
'''
Created on Oct 27, 2015
@author: krsna
'''
from tracker_utils import *
import sys, commands,os
import numpy as np
# Use these to loop later?
movie_dir = '/home/krsna/workspace/animation/tanaya_shotdetect/HTD_scenes_mkv/'#'Antz_scenes'#'../tanaya_shotdetect/scenes/' str(sys.argv[1])#
#0022.avi
# very good example for HTD -0488
num_to_try = 10
shot_ids_rand = list(np.random.randint(5,100,num_to_try))#[int(sys.argv[2])] #
def run_CMT(input_path, skip_frames, bbox, SHOW_IMAGES=False, clip_name='main'):
from numpy import empty, nan
import CMT
import util
CMT = CMT.CMT()
CMT.estimate_scale = True
CMT.estimate_rotation = False
# read video and set delay accordingly
cap = cv2.VideoCapture(input_path)
cap.set(cv2.cv.CV_CAP_PROP_POS_FRAMES, skip_frames)
# something wrong with reading the shot it seems
if not cap.isOpened():
print '#Unable to open video input.'
sys.exit(1)
status, im0 = cap.read()
im_gray0_ = cv2.cvtColor(im0, cv2.COLOR_BGR2GRAY)
im_gray0 = cv2.equalizeHist(im_gray0_)
im_draw = np.copy(im0)
# prepare initial bbox values
bbox_values = [int(v) for v in bbox]
bbox = array(bbox_values)
# Convert to point representation, adding singleton dimension
bbox = util.bb2pts(bbox[None, :])
# Squeeze
bbox = bbox[0, :]
tl = bbox[:2]
br = bbox[2:4]
print '#using', tl, br, 'as init bb'
CMT_TRACKS=[]
CMT.initialise(im_gray0, tl, br)
frame = 1
while True:
# Read image
status, im = cap.read()
if not status:
break
im_gray_ = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
im_gray = cv2.equalizeHist(im_gray_)
im_draw = np.copy(im)
tic = time.time()
CMT.process_frame(im_gray)
toc = time.time()
# Display results
# Draw updated estimate
if CMT.has_result:
cv2.line(im_draw, CMT.tl, CMT.tr, (255, 0, 0), 4)
cv2.line(im_draw, CMT.tr, CMT.br, (255, 0, 0), 4)
cv2.line(im_draw, CMT.br, CMT.bl, (255, 0, 0), 4)
cv2.line(im_draw, CMT.bl, CMT.tl, (255, 0, 0), 4)
CMT_rect = [CMT.tl, CMT.tr,CMT.bl,CMT.br]
util.draw_keypoints(CMT.tracked_keypoints, im_draw, (255, 255, 255))
# this is from simplescale
util.draw_keypoints(CMT.votes[:, :2], im_draw) # blue
util.draw_keypoints(CMT.outliers[:, :2], im_draw, (0, 0, 255))
if SHOW_IMAGES:
cv2.imshow(clip_name, im_draw)
# Check key input
k = cv2.cv.WaitKey(10) & 0xff
# if args.quiet:
# if CMT.has_result: print '1'#, print_str
# else: print '0'#, print_str
# Remember image
im_prev = im_gray
# Advance frame number
frame += 1
print_str = '{5:04d}: center: {0:.2f},{1:.2f} scale: {2:.2f}, active: {3:03d}, {4:04.0f}ms'.format(CMT.center[0], CMT.center[1], CMT.scale_estimate, CMT.active_keypoints.shape[0], 1000 * (toc - tic), frame)
if CMT.has_result: CMT_TRACKS.append([1,CMT_rect])
else: CMT_TRACKS.append([0,nan])#, print_str
return CMT_TRACKS
# shot_num = '0030'
# movie_name = '%s.avi' % (shot_num)#'0022.avi'#'0671.avi' #'Antz.avi'
# movie_path = os.path.join(movie_dir, movie_name)
# print movie_name
# lrmf_path = os.path.join(movie_dir, 'IALM_fgbg_%s.mat' % (shot_num))#"./IALM_background_subtraction2.mat"
vad_init = np.load('voice_init_frame_info.npy')
BOX_TO_TRACK=[]
color = np.random.randint(0,255,(100,3))
color = np.vstack(([0,255,0],color))
#### - - incorporating low rank factored matrix back into video
#for shot_id in shot_ids_rand:
for movie_name in [i for i in os.listdir(movie_dir) if i.endswith('.avi') ][1:3]:
cv2.destroyAllWindows()
shot_num = movie_name.split('.')[0]
#shot_num = str('%04d' % (shot_id,))
#movie_name = '%s.avi' % (shot_num)#'0022.avi'#'0671.avi' #'Antz.avi'
shot_num_int = int(shot_num)
if shot_num_int in [v_i[0][0] for v_i in vad_init]:
vad_info_ = [v_i for v_i in vad_init if v_i[0][0]==shot_num_int]
vad_info = vad_info_[0]
FRAME_CUTOFF = vad_info[1]
if FRAME_CUTOFF==0 :FRAME_CUTOFF+=5
else: FRAME_CUTOFF+=5
else:
FRAME_CUTOFF = 5
movie_path = os.path.join(movie_dir, movie_name)
print movie_name
lrmf_path = os.path.join(movie_dir, 'IALM_fgbg_%s.mat' % (shot_num))#"./IALM_background_subtraction2.mat"
if True:
AE = loadmat(lrmf_path)
# AE = loadmat("HTD_outputs/IALM_fgbg_671.mat")
E = AE['FG']
A = AE['BG']
num_frames = E.shape[-1]
mid_frame = np.round(E.shape[-1]/2.0)
mov = cv2.VideoCapture(movie_path)
frame_count = 0
ret, frame1_ = mov.read()
width, height, ch = frame1_.shape
frame1 = cv2.resize(frame1_, (frame1_.shape[1]/2, frame1_.shape[0]/2))
hsv = np.zeros_like(frame1)
frame1_gs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
r,c = frame1_gs.shape
flow_ref_img = frame1_gs.copy()
E_frame1 = np.asarray(E[:,:,frame_count],'uint8')
A_frame1 = np.asarray(A[:,:,frame_count],'uint8')
gs_img_fg1 = frame1_gs *E_frame1
dst1 = cv2.medianBlur(gs_img_fg1, 5)
_, fg_img_thr = cv2.threshold(dst1, 30, 255, cv2.THRESH_BINARY)
fg_img_rgb1 = cv2.cvtColor(fg_img_thr, cv2.COLOR_GRAY2BGR)
frame1_equ = rgb_equalize(frame1)
cam_frame1 = (fg_img_rgb1) & frame1_equ
#cv2.filter2D(E_frame,-1,kernel)
# _,dst1_ = cv2.threshold(dst1, 0, 255, cv2.THRESH_BINARY)
contours1, hierarchy1 = cv2.findContours(dst1, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
bounding_box_list1 = get_bounding_boxes(contours1)
trimmed_box_list1 = trim_boxes_by_area(bounding_box_list1, 0.8)
bounding_box_list1 = merge_collided_bboxes( trimmed_box_list1, 20 )
_,areas = get_biggest_box(bounding_box_list1,r,c)
# prepare CAMSHIFT - setup ROIs for tracking
# frame_camshift = frame1.copy()
frame_camshift = (fg_img_rgb1) & frame1
bounding_box_list_to_start, _ = get_biggest_box(bounding_box_list1, r, c) #bounding_box_list1
# bounding_box_list_to_start = bounding_box_list1
track_windows, roi_hists = get_camshift_params(bounding_box_list_to_start,frame_camshift)
fg_accumulator = fg_img_rgb1
fg_adder = fg_img_thr
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
#FRAME_CUTOFF=33+24
INITIALIZE_counter=[0]
while (frame_count<=FRAME_CUTOFF):
# print frame_count
frame_count += 1
#print 'retrieving frames'
ret, frame_orig = mov.read()
if frame_orig is not None:
# print frame_count,
#0. Resize image
frame = cv2.resize(frame_orig, (frame_orig.shape[1]/2, frame_orig.shape[0]/2))
my_frame = frame.copy()
rgb_frame = frame.copy()
# cam_frame = frame.copy()
frame_equ = rgb_equalize(frame)
gs_img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gs_img_3ch = cv2.cvtColor(gs_img, cv2.COLOR_GRAY2BGR)
# hsv_img = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
A_frame = np.asarray(A[:,:,frame_count],'uint8')
bg_img = cv2.cvtColor(A_frame, cv2.COLOR_GRAY2RGB)
# _, A_frame_thr = cv2.threshold(A_frame, 240, 255, cv2.THRESH_BINARY)
# if frame_count==1: A_frame_blur = cv2.medianBlur(A_frame_thr,3)
# A_frame_blur+=cv2.medianBlur(A_frame_thr,3)
E_frame = np.asarray(E[:,:,frame_count]*255,'uint8')
gs_img_fg = gs_img *E_frame
kernel = np.ones((5,5),np.float32)/25
E_blur = cv2.medianBlur(E_frame, 5)#cv2.filter2D(E_frame,-1,kernel)
fg_img = E_blur.copy()
_, fg_img_thr = cv2.threshold(fg_img, 30, 255, cv2.THRESH_BINARY)
fg_rgb_img = cv2.cvtColor(fg_img_thr, cv2.COLOR_GRAY2RGB)
#---- OPTICAL FLOW
flow_input_img = gs_img.copy()
flow_output_img = get_flow_img(hsv, flow_ref_img, flow_input_img)
flow_ref_img = flow_input_img
#--- EO - OPTICAL FLOW
# use flow image & fg image masked rgb image for CAM shift?
cam_frame = (flow_output_img.copy() | fg_rgb_img) & frame_equ
#accumulate all the fg_pixel info and
fg_accumulator = (fg_accumulator | (fg_rgb_img))
fg_adder+=fg_img_thr
# mask the frame with accumulated fg image and then use this for CAMshift to track on
blanket_frame = frame_equ & fg_accumulator
contours, hierarchy = cv2.findContours(E_blur, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
bounding_box_list = get_bounding_boxes(contours)
trimmed_box_list = trim_boxes_by_area(bounding_box_list, 0.9)
bounding_box_list = merge_collided_bboxes( trimmed_box_list, 20 )
SHOW_INIT_BOXES=False
if frame_count >= mid_frame:
SHOW_INIT_BOXES=True
if SHOW_INIT_BOXES:
for box in bounding_box_list:
# if box !=
cv2.rectangle( frame, box[0], box[1], (0,255,0), 1 )
#print 'boxes tracked by me', bounding_box_list
#### ------ DO CAMSHIFT NOW
box_after_shift=[]
for i, track_window in enumerate(track_windows):
roi_hist = roi_hists[i]
# tracking on cam_frame space - not on the whole frame - call it a blanket frame
# other options are cam_frame or just frame
hsv = cv2.cvtColor(cam_frame, cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)
ret, win_after_shift = cv2.CamShift(dst, track_window, term_crit)
x,y,w,h = win_after_shift
if frame_count==FRAME_CUTOFF:
BOX_TO_TRACK=[x*2, y*2, w*2, h*2]
#print x*2, y*2, w*2, h*2, '------box after camshift----'
box_after_shift.append(((x,y), (x+w,y+h)))
if frame_count<=FRAME_CUTOFF:
for box in box_after_shift:
cv2.rectangle( my_frame, box[0], box[1], (0,255,0), 1)
# box_after_shift = merge_collided_bboxes(box_after_shift, 0)
for box in box_after_shift:
img2 = cv2.rectangle(frame, box[0], box[1], color[len(INITIALIZE_counter)],2)
# cv2.imshow('img2',cam_frame)
#print 'box_after shift',box_after_shift,
bounding_box_for_shift = box_after_shift
# if not bounding_box_for_shift: track_windows, roi_hists = get_camshift_params(bounding_box_for_shift, cam_frame)
_,test = cv2.threshold(fg_adder, 240, 255, cv2.THRESH_BINARY)
#cv2.imshow('y_%s' % (shot_num),np.hstack(((fg_accumulator & rgb_frame), cam_frame, frame, my_frame)))
#k = cv2.cv.WaitKey(30) & 0xff
if frame_count==FRAME_CUTOFF:
print BOX_TO_TRACK
if BOX_TO_TRACK:
if BOX_TO_TRACK[2] >= 0.9*height and BOX_TO_TRACK[3] >= 0.9*width:
print 'BOX FULL SCREEN??'
BOX_TO_TRACK = [ 20,20, 0.8*height, 0.8*width ]
print BOX_TO_TRACK
frame_to_save = frame_orig.copy()
try:
cmt_status = run_CMT(movie_path, FRAME_CUTOFF, BOX_TO_TRACK, SHOW_IMAGES=True, clip_name='%s #frames=%s frame_cutoff=%s' % (shot_num, num_frames, FRAME_CUTOFF))
print [i[0] for i in cmt_status if i==1]
perc_track = len([i[0] for i in cmt_status if i==1])/(float(len(cmt_status)))
print perc_track
if perc_track >= 0.75:
cv2.imshow('KEY_FRAME',frame_to_save);k = cv2.cv.WaitKey(30) & 0xff
except:
ValueError
print 'NOT TRACKED DUE TO SOME ERROR'
else: print 'no box detected'
else:
mov.release()
cv2.destroyAllWindows()