-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
220 lines (196 loc) · 7.52 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import json
import re
from transformers import BertTokenizer
class OurBertTokenizer(BertTokenizer):
def _tokenize(self, text):
R = ["[CLS]"]
for c in text:
if c in self.vocab:
R.append(c)
elif c == ' ':
R.append('[unused1]')
# elif c == '“' or c == '”':
# R.append('"')
else:
R.append('[UNK]') # 剩余的字符是[UNK]
R.append("[SEP]")
return R
def write_file(datas, output_file):
with open(output_file, 'w', encoding='utf-8') as f:
for obj in datas:
json.dump(obj, f, ensure_ascii=False, sort_keys=True)
f.write("\n")
def remove_duplication(alist):
res = []
for item in alist:
if item not in res:
res.append(item)
return res
def get_labels(path="./data/event_schema.json", task='trigger', mode="ner", target_event_type='', add_event_type_to_role=True):
if not path:
if mode=='ner':
return ["O", "B-ENTITY", "I-ENTITY"]
else:
return ["O"]
elif task=='trigger':
labels = []
rows = open(path, encoding='utf-8').read().splitlines()
if mode == "ner": labels.append('O')
for row in rows:
row = json.loads(row)
event_type = row["event_type"]
if mode == "ner":
labels.append("B-{}".format(event_type))
labels.append("I-{}".format(event_type))
else:
labels.append(event_type)
return remove_duplication(labels)
elif task=='role' and target_event_type=='':
labels = []
rows = open(path, encoding='utf-8').read().splitlines()
if mode == "ner": labels.append('O')
for row in rows:
row = json.loads(row)
event_type = row["event_type"]
for role in row["role_list"]:
role_type = role['role'] if not add_event_type_to_role else event_type + '-' + role['role']
if mode == "ner":
labels.append("B-{}".format(role_type))
labels.append("I-{}".format(role_type))
else:
labels.append(role_type)
return remove_duplication(labels)
# 特定类型事件 [TASK] 中的角色
elif task=='role' and target_event_type!='':
labels = []
rows = open(path, encoding='utf-8').read().splitlines()
if mode == "ner": labels.append('O')
for row in rows:
row = json.loads(row)
event_type = row["event_type"]
if event_type!=target_event_type:
continue
for role in row["role_list"]:
role_type = role['role'] if not add_event_type_to_role else event_type + '-' + role['role']
if mode == "ner":
labels.append("B-{}".format(role_type))
labels.append("I-{}".format(role_type))
else:
labels.append(role_type)
return remove_duplication(labels)
class trigger_category_vocab(object):
"""docstring for trigger_category_vocab"""
def __init__(self):
self.category_to_index = dict()
self.index_to_category = dict()
self.counter = Counter()
self.max_sent_length = 0
def create_vocab(self, files_list):
self.category_to_index["None"] = 0
self.index_to_category[0] = "None"
for file in files_list:
with open(file) as f:
for line in f:
example = json.loads(line)
events, sentence = example["event"], example["sentence"]
if len(sentence) > self.max_sent_length: self.max_sent_length = len(sentence)
for event in events:
event_type = event[0][1]
self.counter[event_type] += 1
if event_type not in self.category_to_index:
index = len(self.category_to_index)
self.category_to_index[event_type] = index
self.index_to_category[index] = event_type
# add [CLS]
self.max_sent_length += 12
def find_all(a_str, sub):
start = 0
results = []
while True:
start = a_str.find(sub, start)
if start == -1: break
results.append(start)
start += 1 # use start += 1 to find overlapping matches
return results
def _split(review, pattern):
split_index_list = []
pre_split_index= 0
pre_index = 0
for m in re.finditer(pattern, review):
split_index = m.span()[1]
if split_index - pre_split_index > 510 -1:
split_index_list.append(pre_index)
pre_split_index = pre_index
pre_index = split_index
if len(review) - pre_split_index > 510 -1 and "split_index" in dir() :
split_index_list.append(split_index)
split_index_list = [0] + split_index_list + [10000000]
sub_reviews = []
for i in range(len(split_index_list)-1):
sub_reviews.append(review[split_index_list[i]:split_index_list[i+1]])
while "" in sub_reviews:
sub_reviews.remove("")
return sub_reviews
def get_sub(text):
patterns = ["。", ";",",","、"]
reviews = [text]
len_max_reviews = len(reviews[0])
for pattern in patterns:
if len_max_reviews > 510:
_reviews =[]
for review in reviews:
if len(review) > 510 :
_reviews += _split(review, pattern)
else:
_reviews.append(review)
reviews = _reviews
len_max_reviews = max([len(review) for review in reviews])
else:
break
return reviews
def get_num_of_arguments(input_file):
lines = open(input_file, encoding='utf-8').read().splitlines()
arg_count = 0
for line in lines:
line = json.loads(line)
for event in line["event_list"]:
arg_count += len(event["arguments"])
print(arg_count)
def read_write(input_file, output_file):
rows = open(input_file, encoding='utf-8').read().splitlines()
results = []
for row in rows:
row = json.loads(row)
id = row.pop('id')
text = row.pop('text')
# labels = row.pop('labels')
event_list = row.pop('event_list')
row['text'] = text
row['id'] = id
# row['labels'] = labels
row['event_list'] = event_list
results.append(row)
write_file(results, output_file)
def get_template(input_file="./data/DuEE_1_0/event_schema.json", output_file="./query_template/lic.csv"):
lines = []
lines.append("event_type,role\n")
rows = open(input_file, encoding='utf-8').read().splitlines()
for row in rows:
row = json.loads(row)
event_type = row["event_type"]
for role in row["role_list"]:
line = []
role = role['role']
line = ','.join([event_type, role]) + "\n"
lines.append(line)
outf = open(output_file, "w", encoding='utf8')
outf.writelines(lines)
outf.close()
if __name__ == '__main__':
labels = get_labels(path="./data/FewFC-main/event_schema/trans.json", task='role', mode="classification", target_event_type='收购')
print(labels)
# get_num_of_arguments("./results/test_pred_bin_segment.json")
# read_write("./output/eval_pred.json", "./results/eval_pred.json")
# read_write("./results/test1.trigger.pred.json", "./results/paddle.trigger.json")
# get_template()
pass