-
Notifications
You must be signed in to change notification settings - Fork 6
/
ps7.tex
175 lines (135 loc) · 4.63 KB
/
ps7.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
\documentclass[12pt, letterpaper]{article}
\title{Problem Set 7: Variational Equation}
\author{Ken Sheedlo}
\usepackage[pdftex]{graphicx}
\usepackage{fullpage}
\usepackage{verbatim}
\usepackage{amsfonts}
\usepackage{caption}
\usepackage{subcaption}
\begin{document}
\maketitle{}
\section*{1. Lorenz System Jacobian}
We wish to find the Jacobian of the Lorenz System. Recall that the Jacobian is
written as
\begin{equation}
D_x\vec{F} = \left[ \begin{array}{ccc}
\frac{\partial f_x}{\partial x} & \frac{\partial f_x}{\partial y} &
\frac{\partial f_x}{\partial z} \\ \frac{\partial f_y}{\partial x} &
\frac{\partial f_y}{\partial y} & \frac{\partial f_y}{\partial z} \\
\frac{\partial f_z}{\partial x} & \frac{\partial f_z}{\partial y} &
\frac{\partial f_z}{\partial z} \\
\end{array} \right]
\end{equation}
and the Lorenz system is
\begin{equation}
\vec{F}(\vec{x}, a, r, b) = \left[ \begin{array}{c}
\dot{x} \\ \dot{y} \\ \dot{z}
\end{array} \right] = \left[ \begin{array}{c}
a(y-x) \\ rx - y - xz \\ xy - bz
\end{array} \right]
\end{equation}
Taking partials of $\dot{x}$, $\dot{y}$ and $\dot{z}$ with respect to $x$, $y$
and $z$ yields the following system of equations:
\begin{equation}
\frac{\partial f_x}{\partial x} = -a
\end{equation}
\begin{equation}
\frac{\partial f_x}{\partial y} = a
\end{equation}
\begin{equation}
\frac{\partial f_x}{\partial z} = 0
\end{equation}
\begin{equation}
\frac{\partial f_y}{\partial x} = r
\end{equation}
\begin{equation}
\frac{\partial f_y}{\partial y} = -1
\end{equation}
\begin{equation}
\frac{\partial f_y}{\partial z} = -x
\end{equation}
\begin{equation}
\frac{\partial f_z}{\partial x} = y
\end{equation}
\begin{equation}
\frac{\partial f_z}{\partial y} = x
\end{equation}
\begin{equation}
\frac{\partial f_z}{\partial z} = -b
\end{equation}
Written as a Jacobian, these equations give
\begin{equation}
D_x\vec{F} = \left[ \begin{array}{ccc}
-a & a & 0 \\
r & -1 & -x \\
y & x & -b
\end{array} \right]
\end{equation}
\section*{2. Lorenz Variational System}
The variational system for the Lorenz equation can be written as $\dot{\delta}
= D_x\vec{F}\delta$. In terms of the Jacobian matrix and the matrix of variations,
this is
\begin{equation}
\dot{\delta} = \left[ \begin{array}{ccc}
-a & a & 0 \\
r & -1 & -x \\
y & x & -b
\end{array} \right] \left[ \begin{array}{ccc}
\delta_{xx} & \delta_{yx} & \delta_{zx} \\
\delta_{xy} & \delta_{yy} & \delta_{zy} \\
\delta_{xz} & \delta_{yz} & \delta_{zz}
\end{array} \right]
\end{equation}
So, $\dot{\delta}$ is a $3 \times 3$ matrix of derivatives, and $\delta_{xy}$ is
the component of the $x$-variation that comes from the previous $y$-variation.
We can use the matrix of derivatives of variations to integrate the change in
variations over the system.
\section*{3. Numerical Analysis}
Integrating the system from initial condition (a) as described in the writeup
gave the following results:
\begin{equation}
\delta = \left[ \begin{array}{ccc}
2.545755 & 1.980193 & -0.030017 \\
5.557742 & 4.395069 & -0.090683 \\
0.506627 & 0.384858 & 0.665060
\end{array} \right]
\end{equation}
\vspace{0.6em}
with column sums $\sum{\delta_x} = 8.61024$, $\sum{\delta_y} = 6.760119$, and
$\sum{\delta_z} = 0.544360$.
\vspace{1em}
Integrating the system from initial condition (b) gave the following results:
\begin{equation}
\delta = \left[ \begin{array}{ccc}
2.333913 & 1.751566 & -0.509134 \\
4.566961 & 3.461204 & -1.218821 \\
3.383342 & 2.669810 & -0.045495
\end{array} \right]
\end{equation}
\vspace{0.6em}
with column sums $\sum{\delta_x} = 10.284215$, $\sum{\delta_y} = 7.882581$, and
$\sum{\delta_z} = -1.773450$.
\vspace{1em}
Integrating the system from initial condition (c) gave the following results:
\begin{equation}
\delta = \left[ \begin{array}{ccc}
2.545755 & 1.980193 & 0.030017 \\
5.557742 & 4.395069 & 0.090683 \\
-0.506627 & -0.384858 & 0.665060
\end{array} \right]
\end{equation}
\vspace{0.6em}
with column sums $\sum{\delta_x} = 7.596870$, $\sum{\delta_y} = 5.990404$, and
$\sum{\delta_z} = 0.785760$.
\vspace{1em}
The variations evidently grow fastest from point (b), where the $x$ component
of the variation grows by a factor of 10, the $y$ by almost a factor of 8, and
the $z$ flips around backwards to $-1.7$. In fact, the $z$ component from point
(b) is interesting in that it is the only component from any of the initial
conditions tested that actually experiences negative growth. The $x$ and $y$
components consistently experience substantial positive growth from all initial
conditions. The $z$ components of evolved variations from points (a) and (c) are
both positive and less than 1. This means that they should be getting smaller
but not changing sign.
\end{document}