diff --git a/workflow/notebooks/iqtree_stats.py.ipynb b/workflow/notebooks/iqtree_stats.py.ipynb
index ad89272e..06d724a9 100644
--- a/workflow/notebooks/iqtree_stats.py.ipynb
+++ b/workflow/notebooks/iqtree_stats.py.ipynb
@@ -5,20 +5,7 @@
"id": "signed-investigator",
"metadata": {},
"source": [
- "# IQTREE Stats Notebook\n",
- "\n",
- "## 0. **Setup**\n",
- "\n",
- "## 1. **Import**\n",
- "\n",
- "## 2. **Root-To-Tip Regression** \n",
- "\n",
- "- Calculate Clade And Root Distances\n",
- "\n",
- "\n",
- "## 3. **Isolation By Distance** \n",
- "\n",
- "## 4. **Timeline**\n"
+ "# IQTREE Stats Notebook"
]
},
{
@@ -63,7 +50,9 @@
"import statsmodels.stats.multitest as smmt\n",
"import math\n",
"from skbio.stats import distance as skbio_dist\n",
- "from functions import *"
+ "from functions import *\n",
+ "from mpl_toolkits.axes_grid1.inset_locator import inset_axes\n",
+ "import sklearn"
]
},
{
@@ -85,7 +74,7 @@
" WILDCARDS = snakemake.wildcards\n",
" project_dir = os.getcwd()\n",
"except NameError:\n",
- " WILDCARDS = [\"all\", \"chromosome\", \"full\", \"30\"]\n",
+ " WILDCARDS = [\"all\", \"chromosome\", \"full\", \"5\"]\n",
" project_dir = os.path.dirname(os.path.dirname(os.getcwd()))\n",
" \n",
"results_dir = os.path.join(project_dir, \"results/\")\n",
@@ -119,11 +108,6 @@
" full_metadata_path = metadata_path\n",
"\n",
"# ------------------------------------------\n",
- "# Alignment\n",
- "constant_sites_path = results_dir + \"snippy_multi/all/chromosome/full/snippy-multi.constant_sites.txt\"\n",
- "aln_path = iqtree_dir + \"filter-sites/snippy-multi.snps.aln\"\n",
- "\n",
- "# ------------------------------------------\n",
"# Output\n",
"out_dir = iqtree_dir + \"filter-taxa/\"\n",
"if not os.path.exists(out_dir):\n",
@@ -150,8 +134,6 @@
"np.random.seed(1235423134)\n",
"\n",
"NO_DATA_CHAR = \"NA\"\n",
- "UNKNOWN_CHAR = \"?\"\n",
- "CONFIDENCE = 95\n",
"ALPHA = 0.05\n",
"\n",
"# ------------------------------------------\n",
@@ -165,56 +147,11 @@
"world_polygons = geopandas.read_file(geopandas.datasets.get_path(\"naturalearth_lowres\"))\n",
"\n",
"# ------------------------------------------\n",
- "# Alignment\n",
- "with open(constant_sites_path) as infile:\n",
- " data = infile.read().strip().split(\",\")\n",
- " constant_sites = sum([int(count) for count in data])\n",
- "\n",
- "aln = AlignIO.read(aln_path, \"fasta\")\n",
- "variant_sites = len(aln[0].seq)\n",
- "SEQ_LEN = constant_sites + variant_sites\n",
- "\n",
- "# ------------------------------------------\n",
"# Plotting\n",
- "SM_FONT = 4\n",
- "MED_FONT = 6\n",
- "LG_FONT = 8\n",
- "D3_PAL = [\"#1f77b4\", \"#ff7f0e\", \"#2ca02c\", \"#d62728\", \"#9467bd\", \"#8c564b\", \"#e377c2\", \"#7f7f7f\", \"#bcbd22\", \"#17becf\" ]\n",
- "plt.rcParams['axes.facecolor']='white'\n",
- "plt.rcParams['savefig.facecolor']='white'\n",
- "plt.rcParams['savefig.dpi']=400\n",
- "\n",
- "# ------------------------------------------\n",
- "BRANCH_LIST = {\n",
- " \"0.PRE\": [\"0.PRE1\", \"0.PRE2\"], \n",
- " # Exclude ancient 0.PE8, \n",
- " \"0.PE\": [\"0.PE2\", \"0.PE4m\", \"0.PE4m\", \"0.PE4t\", \"0.PE4a\", \"0.PE5\", \"0.PE7\", \"0.PE10\"], \n",
- " #\"0.PE\": [\"0.PE2\", \"0.PE4m\", \"0.PE4m\", \"0.PE4t\", \"0.PE4a\", \"0.PE5\", \"0.PE7\", \"0.PE8\", \"0.PE10\"], \n",
- " \"0.ANT\": [\"0.ANT1\", \"0.ANT2\",\"0.ANT3\",\"0.ANT5\"],\n",
- " #\"0.ANT\": [\"0.ANT1\", \"0.ANT2\",\"0.ANT3\",\"0.ANT4\",\"0.ANT5\"], \n",
- " \"0.ANT4\" : [\"0.ANT4\"], \n",
- " \"1.PRE\" : [\"1.PRE0\", \"1.PRE1\", \"1.PRE2\", \"1.PRE3\"], \n",
- " \"1.ANT\": [\"1.ANT1\"], \n",
- " \"1.IN\": [\"1.IN1\",\"1.IN2\",\"1.IN3\"], \n",
- " \"1.ORI\" : [\"1.ORI1\", \"1.ORI2\", \"1.ORI3\"],\n",
- " \"2.ANT\": [\"2.ANT1\",\"2.ANT2\",\"2.ANT3\" ], \n",
- " \"2.MED\": [\"2.MED0\", \"2.MED1\",\"2.MED2\",\"2.MED3\" ], \n",
- " \"3.ANT\": [\"3.ANT1\", \"3.ANT2\" ], \n",
- " \"4.ANT\": [\"4.ANT1\" ], \n",
- "}\n",
- "\n",
- "ANCIENT_BRANCH_LIST = {\n",
- " \"0.PRE\": [\"0.PRE1\", \"0.PRE2\"], \n",
- " \"0.ANT4\" : [\"0.ANT4\"], \n",
- " \"1.PRE\" : [\"1.PRE1\", \"1.PRE2\", \"1.PRE3\"], \n",
- "}\n",
- "\n",
- "MUG_ATTRIBUTE_LIST = [\n",
- " \"branch_major\",\n",
- " \"branch_minor\",\n",
- " \"country\",\n",
- " \"province\",\n",
- "]"
+ "plt.rcParams['axes.facecolor'] ='white'\n",
+ "plt.rcParams['savefig.facecolor'] ='white'\n",
+ "plt.rcParams['savefig.dpi'] = 400\n",
+ "plt.rcParams['svg.fonttype'] = 'none'"
]
},
{
@@ -288,553 +225,28 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "{'1.PRE': '#8000ff'}\n"
+ "{'0.PRE': '#8000ff', '0.PE': '#5148fc', '0.ANT': '#238af5', '0.ANT4': '#0cc1e8', '3.ANT': '#3ae8d7', '4.ANT': '#68fcc1', '2.ANT': '#97fca7', '2.MED': '#c5e88a', '1.PRE': '#f3c16a', '1.ANT': '#ff8a48', '1.IN': '#ff4824', '1.ORI': '#ff0000', 'NA': '#c4c4c4'}\n"
]
- },
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " strain | \n",
- " date | \n",
- " date_bp | \n",
- " country | \n",
- " province | \n",
- " country_lat | \n",
- " country_lon | \n",
- " province_lat | \n",
- " province_lon | \n",
- " biovar | \n",
- " branch_major | \n",
- " branch_minor | \n",
- " biosample_accession | \n",
- " biosample_comment | \n",
- " branch_number | \n",
- " continent | \n",
- " date_mean | \n",
- " date_bp_mean | \n",
- " date_err | \n",
- " lat | \n",
- " lon | \n",
- " host_human | \n",
- " branch_major_color | \n",
- " geometry_size | \n",
- " geometry | \n",
- " root_rtt_dist | \n",
- " clade_rtt_dist | \n",
- "
\n",
- " \n",
- " sample | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- " | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " SAMEA5818830 | \n",
- " STN021 | \n",
- " [1485:1635] | \n",
- " [-536:-386] | \n",
- " Switzerland | \n",
- " Nidwalden | \n",
- " 46.798562 | \n",
- " 8.231974 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Second Pandemic | \n",
- " 1.PRE | \n",
- " 1.PRE1 | \n",
- " SAMEA5818830 | \n",
- " KEEP: SRA Ancient | \n",
- " 1 | \n",
- " Europe | \n",
- " 1560.0 | \n",
- " 461.0 | \n",
- " 75.0 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Human | \n",
- " #8000ff | \n",
- " 8.0 | \n",
- " POINT (8.4119773 46.942756) | \n",
- " 0.000012 | \n",
- " 0.000012 | \n",
- "
\n",
- " \n",
- " SAMEA5818829 | \n",
- " STN020 | \n",
- " [1485:1635] | \n",
- " [-536:-386] | \n",
- " Switzerland | \n",
- " Nidwalden | \n",
- " 46.798562 | \n",
- " 8.231974 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Second Pandemic | \n",
- " 1.PRE | \n",
- " 1.PRE1 | \n",
- " SAMEA5818829 | \n",
- " KEEP: SRA Ancient | \n",
- " 1 | \n",
- " Europe | \n",
- " 1560.0 | \n",
- " 461.0 | \n",
- " 75.0 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Human | \n",
- " #8000ff | \n",
- " 8.0 | \n",
- " POINT (8.4119773 46.942756) | \n",
- " 0.000012 | \n",
- " 0.000012 | \n",
- "
\n",
- " \n",
- " SAMEA5818828 | \n",
- " STN019 | \n",
- " [1485:1635] | \n",
- " [-536:-386] | \n",
- " Switzerland | \n",
- " Nidwalden | \n",
- " 46.798562 | \n",
- " 8.231974 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Second Pandemic | \n",
- " 1.PRE | \n",
- " 1.PRE1 | \n",
- " SAMEA5818828 | \n",
- " KEEP: SRA Ancient | \n",
- " 1 | \n",
- " Europe | \n",
- " 1560.0 | \n",
- " 461.0 | \n",
- " 75.0 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Human | \n",
- " #8000ff | \n",
- " 8.0 | \n",
- " POINT (8.4119773 46.942756) | \n",
- " 0.000012 | \n",
- " 0.000012 | \n",
- "
\n",
- " \n",
- " SAMEA5818826 | \n",
- " STN014 | \n",
- " [1485:1635] | \n",
- " [-536:-386] | \n",
- " Switzerland | \n",
- " Nidwalden | \n",
- " 46.798562 | \n",
- " 8.231974 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Second Pandemic | \n",
- " 1.PRE | \n",
- " 1.PRE1 | \n",
- " SAMEA5818826 | \n",
- " KEEP: SRA Ancient | \n",
- " 1 | \n",
- " Europe | \n",
- " 1560.0 | \n",
- " 461.0 | \n",
- " 75.0 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Human | \n",
- " #8000ff | \n",
- " 8.0 | \n",
- " POINT (8.4119773 46.942756) | \n",
- " 0.000012 | \n",
- " 0.000012 | \n",
- "
\n",
- " \n",
- " SAMEA5818825 | \n",
- " STN013 | \n",
- " [1485:1635] | \n",
- " [-536:-386] | \n",
- " Switzerland | \n",
- " Nidwalden | \n",
- " 46.798562 | \n",
- " 8.231974 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Second Pandemic | \n",
- " 1.PRE | \n",
- " 1.PRE1 | \n",
- " SAMEA5818825 | \n",
- " KEEP: SRA Ancient | \n",
- " 1 | \n",
- " Europe | \n",
- " 1560.0 | \n",
- " 461.0 | \n",
- " 75.0 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Human | \n",
- " #8000ff | \n",
- " 8.0 | \n",
- " POINT (8.4119773 46.942756) | \n",
- " 0.000012 | \n",
- " 0.000012 | \n",
- "
\n",
- " \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- " ... | \n",
- "
\n",
- " \n",
- " D75 | \n",
- " G861x1035 | \n",
- " [1200:1560] | \n",
- " [-821:-461] | \n",
- " Denmark | \n",
- " Region of Southern Denmark | \n",
- " 55.670249 | \n",
- " 10.333328 | \n",
- " 55.378426 | \n",
- " 9.131806 | \n",
- " Second Pandemic | \n",
- " 1.PRE | \n",
- " 1.PRE1 | \n",
- " D75 | \n",
- " KEEP: Local Ancient Denmark | \n",
- " 1 | \n",
- " Europe | \n",
- " 1380.0 | \n",
- " 641.0 | \n",
- " 180.0 | \n",
- " 55.378426 | \n",
- " 9.131806 | \n",
- " Human | \n",
- " #8000ff | \n",
- " 5.0 | \n",
- " POINT (9.131806374501609 55.37842625) | \n",
- " 0.000011 | \n",
- " 0.000011 | \n",
- "
\n",
- " \n",
- " P187 | \n",
- " A146x3011 | \n",
- " [1150:1574] | \n",
- " [-871:-447] | \n",
- " Denmark | \n",
- " Central Denmark Region | \n",
- " 55.670249 | \n",
- " 10.333328 | \n",
- " 56.235648 | \n",
- " 9.234625 | \n",
- " Second Pandemic | \n",
- " 1.PRE | \n",
- " 1.PRE1 | \n",
- " P187 | \n",
- " KEEP: Local Ancient Denmark | \n",
- " 1 | \n",
- " Europe | \n",
- " 1362.0 | \n",
- " 659.0 | \n",
- " 212.0 | \n",
- " 56.235648 | \n",
- " 9.234625 | \n",
- " Human | \n",
- " #8000ff | \n",
- " 4.0 | \n",
- " POINT (9.234625027778005 56.23564835) | \n",
- " 0.000007 | \n",
- " 0.000007 | \n",
- "
\n",
- " \n",
- " P212 | \n",
- " G371 | \n",
- " [1150:1350] | \n",
- " [-871:-671] | \n",
- " Denmark | \n",
- " Central Denmark Region | \n",
- " 55.670249 | \n",
- " 10.333328 | \n",
- " 56.235648 | \n",
- " 9.234625 | \n",
- " Second Pandemic | \n",
- " 1.PRE | \n",
- " 1.PRE1 | \n",
- " P212 | \n",
- " KEEP: Local Ancient Denmark | \n",
- " 1 | \n",
- " Europe | \n",
- " 1250.0 | \n",
- " 771.0 | \n",
- " 100.0 | \n",
- " 56.235648 | \n",
- " 9.234625 | \n",
- " Human | \n",
- " #8000ff | \n",
- " 4.0 | \n",
- " POINT (9.234625027778005 56.23564835) | \n",
- " 0.000009 | \n",
- " 0.000009 | \n",
- "
\n",
- " \n",
- " P387 | \n",
- " A1480x1480 | \n",
- " [1100:1500] | \n",
- " [-921:-521] | \n",
- " Denmark | \n",
- " Central Denmark Region | \n",
- " 55.670249 | \n",
- " 10.333328 | \n",
- " 56.235648 | \n",
- " 9.234625 | \n",
- " Second Pandemic | \n",
- " 1.PRE | \n",
- " 1.PRE1 | \n",
- " P387 | \n",
- " KEEP: Local Ancient Denmark | \n",
- " 1 | \n",
- " Europe | \n",
- " 1300.0 | \n",
- " 721.0 | \n",
- " 200.0 | \n",
- " 56.235648 | \n",
- " 9.234625 | \n",
- " Human | \n",
- " #8000ff | \n",
- " 4.0 | \n",
- " POINT (9.234625027778005 56.23564835) | \n",
- " 0.000009 | \n",
- " 0.000009 | \n",
- "
\n",
- " \n",
- " R36 | \n",
- " G25Bx98 | \n",
- " [1200:1560] | \n",
- " [-821:-461] | \n",
- " Denmark | \n",
- " Region of Southern Denmark | \n",
- " 55.670249 | \n",
- " 10.333328 | \n",
- " 55.378426 | \n",
- " 9.131806 | \n",
- " Second Pandemic | \n",
- " 1.PRE | \n",
- " 1.PRE1 | \n",
- " R36 | \n",
- " KEEP: Local Ancient Denmark | \n",
- " 1 | \n",
- " Europe | \n",
- " 1380.0 | \n",
- " 641.0 | \n",
- " 180.0 | \n",
- " 55.378426 | \n",
- " 9.131806 | \n",
- " Human | \n",
- " #8000ff | \n",
- " 5.0 | \n",
- " POINT (9.131806374501609 55.37842625) | \n",
- " 0.000003 | \n",
- " 0.000003 | \n",
- "
\n",
- " \n",
- "
\n",
- "
49 rows × 27 columns
\n",
- "
"
- ],
- "text/plain": [
- " strain date date_bp country \\\n",
- "sample \n",
- "SAMEA5818830 STN021 [1485:1635] [-536:-386] Switzerland \n",
- "SAMEA5818829 STN020 [1485:1635] [-536:-386] Switzerland \n",
- "SAMEA5818828 STN019 [1485:1635] [-536:-386] Switzerland \n",
- "SAMEA5818826 STN014 [1485:1635] [-536:-386] Switzerland \n",
- "SAMEA5818825 STN013 [1485:1635] [-536:-386] Switzerland \n",
- "... ... ... ... ... \n",
- "D75 G861x1035 [1200:1560] [-821:-461] Denmark \n",
- "P187 A146x3011 [1150:1574] [-871:-447] Denmark \n",
- "P212 G371 [1150:1350] [-871:-671] Denmark \n",
- "P387 A1480x1480 [1100:1500] [-921:-521] Denmark \n",
- "R36 G25Bx98 [1200:1560] [-821:-461] Denmark \n",
- "\n",
- " province country_lat country_lon \\\n",
- "sample \n",
- "SAMEA5818830 Nidwalden 46.798562 8.231974 \n",
- "SAMEA5818829 Nidwalden 46.798562 8.231974 \n",
- "SAMEA5818828 Nidwalden 46.798562 8.231974 \n",
- "SAMEA5818826 Nidwalden 46.798562 8.231974 \n",
- "SAMEA5818825 Nidwalden 46.798562 8.231974 \n",
- "... ... ... ... \n",
- "D75 Region of Southern Denmark 55.670249 10.333328 \n",
- "P187 Central Denmark Region 55.670249 10.333328 \n",
- "P212 Central Denmark Region 55.670249 10.333328 \n",
- "P387 Central Denmark Region 55.670249 10.333328 \n",
- "R36 Region of Southern Denmark 55.670249 10.333328 \n",
- "\n",
- " province_lat province_lon biovar branch_major \\\n",
- "sample \n",
- "SAMEA5818830 46.942756 8.411977 Second Pandemic 1.PRE \n",
- "SAMEA5818829 46.942756 8.411977 Second Pandemic 1.PRE \n",
- "SAMEA5818828 46.942756 8.411977 Second Pandemic 1.PRE \n",
- "SAMEA5818826 46.942756 8.411977 Second Pandemic 1.PRE \n",
- "SAMEA5818825 46.942756 8.411977 Second Pandemic 1.PRE \n",
- "... ... ... ... ... \n",
- "D75 55.378426 9.131806 Second Pandemic 1.PRE \n",
- "P187 56.235648 9.234625 Second Pandemic 1.PRE \n",
- "P212 56.235648 9.234625 Second Pandemic 1.PRE \n",
- "P387 56.235648 9.234625 Second Pandemic 1.PRE \n",
- "R36 55.378426 9.131806 Second Pandemic 1.PRE \n",
- "\n",
- " branch_minor biosample_accession biosample_comment \\\n",
- "sample \n",
- "SAMEA5818830 1.PRE1 SAMEA5818830 KEEP: SRA Ancient \n",
- "SAMEA5818829 1.PRE1 SAMEA5818829 KEEP: SRA Ancient \n",
- "SAMEA5818828 1.PRE1 SAMEA5818828 KEEP: SRA Ancient \n",
- "SAMEA5818826 1.PRE1 SAMEA5818826 KEEP: SRA Ancient \n",
- "SAMEA5818825 1.PRE1 SAMEA5818825 KEEP: SRA Ancient \n",
- "... ... ... ... \n",
- "D75 1.PRE1 D75 KEEP: Local Ancient Denmark \n",
- "P187 1.PRE1 P187 KEEP: Local Ancient Denmark \n",
- "P212 1.PRE1 P212 KEEP: Local Ancient Denmark \n",
- "P387 1.PRE1 P387 KEEP: Local Ancient Denmark \n",
- "R36 1.PRE1 R36 KEEP: Local Ancient Denmark \n",
- "\n",
- " branch_number continent date_mean date_bp_mean date_err \\\n",
- "sample \n",
- "SAMEA5818830 1 Europe 1560.0 461.0 75.0 \n",
- "SAMEA5818829 1 Europe 1560.0 461.0 75.0 \n",
- "SAMEA5818828 1 Europe 1560.0 461.0 75.0 \n",
- "SAMEA5818826 1 Europe 1560.0 461.0 75.0 \n",
- "SAMEA5818825 1 Europe 1560.0 461.0 75.0 \n",
- "... ... ... ... ... ... \n",
- "D75 1 Europe 1380.0 641.0 180.0 \n",
- "P187 1 Europe 1362.0 659.0 212.0 \n",
- "P212 1 Europe 1250.0 771.0 100.0 \n",
- "P387 1 Europe 1300.0 721.0 200.0 \n",
- "R36 1 Europe 1380.0 641.0 180.0 \n",
- "\n",
- " lat lon host_human branch_major_color \\\n",
- "sample \n",
- "SAMEA5818830 46.942756 8.411977 Human #8000ff \n",
- "SAMEA5818829 46.942756 8.411977 Human #8000ff \n",
- "SAMEA5818828 46.942756 8.411977 Human #8000ff \n",
- "SAMEA5818826 46.942756 8.411977 Human #8000ff \n",
- "SAMEA5818825 46.942756 8.411977 Human #8000ff \n",
- "... ... ... ... ... \n",
- "D75 55.378426 9.131806 Human #8000ff \n",
- "P187 56.235648 9.234625 Human #8000ff \n",
- "P212 56.235648 9.234625 Human #8000ff \n",
- "P387 56.235648 9.234625 Human #8000ff \n",
- "R36 55.378426 9.131806 Human #8000ff \n",
- "\n",
- " geometry_size geometry \\\n",
- "sample \n",
- "SAMEA5818830 8.0 POINT (8.4119773 46.942756) \n",
- "SAMEA5818829 8.0 POINT (8.4119773 46.942756) \n",
- "SAMEA5818828 8.0 POINT (8.4119773 46.942756) \n",
- "SAMEA5818826 8.0 POINT (8.4119773 46.942756) \n",
- "SAMEA5818825 8.0 POINT (8.4119773 46.942756) \n",
- "... ... ... \n",
- "D75 5.0 POINT (9.131806374501609 55.37842625) \n",
- "P187 4.0 POINT (9.234625027778005 56.23564835) \n",
- "P212 4.0 POINT (9.234625027778005 56.23564835) \n",
- "P387 4.0 POINT (9.234625027778005 56.23564835) \n",
- "R36 5.0 POINT (9.131806374501609 55.37842625) \n",
- "\n",
- " root_rtt_dist clade_rtt_dist \n",
- "sample \n",
- "SAMEA5818830 0.000012 0.000012 \n",
- "SAMEA5818829 0.000012 0.000012 \n",
- "SAMEA5818828 0.000012 0.000012 \n",
- "SAMEA5818826 0.000012 0.000012 \n",
- "SAMEA5818825 0.000012 0.000012 \n",
- "... ... ... \n",
- "D75 0.000011 0.000011 \n",
- "P187 0.000007 0.000007 \n",
- "P212 0.000009 0.000009 \n",
- "P387 0.000009 0.000009 \n",
- "R36 0.000003 0.000003 \n",
- "\n",
- "[49 rows x 27 columns]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
}
],
"source": [
"colors_dict = {}\n",
"\n",
+ "# Initialize columns\n",
+ "metadata_df[\"population_color\"] = [NO_DATA_CHAR] * len(metadata_df)\n",
+ "metadata_df[\"population\"] = [NO_DATA_CHAR] * len(metadata_df)\n",
+ "\n",
"# Colors dictionary is based off full tree\n",
"for t in full_divtree.get_terminals():\n",
- " branch = full_metadata_df[\"branch_major\"][t.name]\n",
- " if branch not in colors_dict and branch != NO_DATA_CHAR:\n",
- " colors_dict[branch] = \"\"\n",
+ " branch_minor = full_metadata_df[\"branch_minor\"][t.name]\n",
+ " branch_major = full_metadata_df[\"branch_major\"][t.name]\n",
+ " population = branch_major\n",
+ " if branch_minor == \"0.ANT4\":\n",
+ " population = branch_minor\n",
+ " metadata_df.at[t.name, \"population\"] = population\n",
+ " if population not in colors_dict and population != NO_DATA_CHAR:\n",
+ " colors_dict[population] = \"\"\n",
+ "\n",
"\n",
"# Create the custom color map (pyplot)\n",
"cmap = plt.get_cmap(\"rainbow\", len(colors_dict))\n",
@@ -844,23 +256,19 @@
"attr_hex = [colors.to_hex(col) for col in cmaplist]\n",
"\n",
"# Assign colors to value\n",
- "for branch, color in zip(colors_dict, attr_hex):\n",
- " colors_dict[branch] = color\n",
- "\n",
- "print(colors_dict)\n",
- "\n",
- "\n",
- "# Branch Major Clor\n",
- "metadata_df[\"branch_major_color\"] = [NO_DATA_CHAR] * len(metadata_df)\n",
+ "for population, color in zip(colors_dict, attr_hex):\n",
+ " colors_dict[population] = color\n",
+ "# Add NA\n",
+ "colors_dict[NO_DATA_CHAR] = \"#c4c4c4\"\n",
"\n",
"for c in divtree.get_terminals():\n",
" sample = c.name\n",
- " # Clade Color \n",
- " branch_major = metadata_df[\"branch_major\"][sample]\n",
- " branch_major_color = colors_dict[branch_major]\n",
- " metadata_df.at[sample, \"branch_major_color\"] = branch_major_color\n",
+ " population = metadata_df[\"population\"][c.name]\n",
+ " population_color = colors_dict[population]\n",
+ " metadata_df.at[sample, \"population_color\"] = population_color\n",
"\n",
- "display(metadata_df)"
+ "print(colors_dict)\n",
+ "#display(metadata_df)"
]
},
{
@@ -920,11 +328,16 @@
" lat | \n",
" lon | \n",
" host_human | \n",
- " branch_major_color | \n",
- " geometry_size | \n",
+ " sequencing_technology | \n",
+ " assembly_method | \n",
+ " host_raw | \n",
+ " host_order | \n",
+ " population_color | \n",
+ " population | \n",
" geometry | \n",
" root_rtt_dist | \n",
" clade_rtt_dist | \n",
+ " population_rtt_dist | \n",
" \n",
" \n",
" sample | \n",
@@ -955,157 +368,187 @@
" | \n",
" | \n",
" | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
"
\n",
" \n",
" \n",
" \n",
- " SAMEA5818830 | \n",
- " STN021 | \n",
- " [1485:1635] | \n",
- " [-536:-386] | \n",
- " Switzerland | \n",
- " Nidwalden | \n",
- " 46.798562 | \n",
- " 8.231974 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Second Pandemic | \n",
- " 1.PRE | \n",
- " 1.PRE1 | \n",
- " SAMEA5818830 | \n",
- " KEEP: SRA Ancient | \n",
+ " Reference | \n",
+ " CO92 | \n",
+ " 1992 | \n",
+ " -29 | \n",
+ " United States of America | \n",
+ " Colorado | \n",
+ " 39.783730 | \n",
+ " -100.445882 | \n",
+ " 38.7252 | \n",
+ " -105.608 | \n",
+ " Orientalis | \n",
+ " 1.ORI | \n",
+ " 1.ORI1 | \n",
+ " SAMEA1705942 | \n",
+ " KEEP: Assembly Modern Reference | \n",
" 1 | \n",
- " Europe | \n",
- " 1560.0 | \n",
- " 461.0 | \n",
- " 75.0 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
+ " North America | \n",
+ " 1992.0 | \n",
+ " 29.0 | \n",
+ " 0.0 | \n",
+ " 38.725178 | \n",
+ " -105.607716 | \n",
" Human | \n",
- " #8000ff | \n",
- " 8.0 | \n",
- " POINT (8.41198 46.94276) | \n",
- " 0.000012 | \n",
- " 0.000012 | \n",
+ " NA | \n",
+ " NA | \n",
+ " Human | \n",
+ " Human | \n",
+ " #ff0000 | \n",
+ " 1.ORI | \n",
+ " POINT (-105.60772 38.72518) | \n",
+ " 0.000073 | \n",
+ " NA | \n",
+ " 0.000006 | \n",
"
\n",
" \n",
- " SAMEA5818829 | \n",
- " STN020 | \n",
- " [1485:1635] | \n",
- " [-536:-386] | \n",
- " Switzerland | \n",
- " Nidwalden | \n",
- " 46.798562 | \n",
- " 8.231974 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Second Pandemic | \n",
- " 1.PRE | \n",
- " 1.PRE1 | \n",
- " SAMEA5818829 | \n",
- " KEEP: SRA Ancient | \n",
- " 1 | \n",
+ " GCA_009909635.1_ASM990963v1_genomic | \n",
+ " 9_10 | \n",
+ " 1923.0 | \n",
+ " -98 | \n",
+ " Russia | \n",
+ " Rostov Oblast | \n",
+ " 64.686314 | \n",
+ " 97.745306 | \n",
+ " 47.6222 | \n",
+ " 40.7958 | \n",
+ " Medievalis | \n",
+ " 2.MED | \n",
+ " 2.MED1 | \n",
+ " SAMN13632815 | \n",
+ " KEEP: Assembly Modern | \n",
+ " 2 | \n",
" Europe | \n",
- " 1560.0 | \n",
- " 461.0 | \n",
- " 75.0 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
+ " 1923.0 | \n",
+ " 98.0 | \n",
+ " 0.0 | \n",
+ " 47.622245 | \n",
+ " 40.795794 | \n",
" Human | \n",
- " #8000ff | \n",
- " 8.0 | \n",
- " POINT (8.41198 46.94276) | \n",
- " 0.000012 | \n",
- " 0.000012 | \n",
+ " IonTorrent | \n",
+ " Newbler v. 2.6 | \n",
+ " Homo sapiens | \n",
+ " Human | \n",
+ " #c5e88a | \n",
+ " 2.MED | \n",
+ " POINT (40.79579 47.62225) | \n",
+ " 0.000073 | \n",
+ " NA | \n",
+ " 0.000010 | \n",
"
\n",
" \n",
- " SAMEA5818828 | \n",
- " STN019 | \n",
- " [1485:1635] | \n",
- " [-536:-386] | \n",
- " Switzerland | \n",
- " Nidwalden | \n",
- " 46.798562 | \n",
- " 8.231974 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Second Pandemic | \n",
- " 1.PRE | \n",
- " 1.PRE1 | \n",
- " SAMEA5818828 | \n",
- " KEEP: SRA Ancient | \n",
- " 1 | \n",
- " Europe | \n",
- " 1560.0 | \n",
- " 461.0 | \n",
- " 75.0 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Human | \n",
- " #8000ff | \n",
- " 8.0 | \n",
- " POINT (8.41198 46.94276) | \n",
- " 0.000012 | \n",
+ " GCA_009669545.1_ASM966954v1_genomic | \n",
+ " 42126 | \n",
+ " 2006.0 | \n",
+ " -15 | \n",
+ " China | \n",
+ " Xinjiang | \n",
+ " 35.000074 | \n",
+ " 104.999927 | \n",
+ " 42.4805 | \n",
+ " 85.4633 | \n",
+ " Antiqua | \n",
+ " 0.ANT | \n",
+ " 0.ANT1 | \n",
+ " SAMN07722925 | \n",
+ " KEEP: Assembly Modern | \n",
+ " 0 | \n",
+ " Asia | \n",
+ " 2006.0 | \n",
+ " 15.0 | \n",
+ " 0.0 | \n",
+ " 42.480495 | \n",
+ " 85.463346 | \n",
+ " Non-Human | \n",
+ " Illumina Hiseq 2000 | \n",
+ " SOAPdenovo v. 2.04 | \n",
+ " Citellus undulatus | \n",
+ " Rodentia | \n",
+ " #238af5 | \n",
+ " 0.ANT | \n",
+ " POINT (85.46335 42.48050) | \n",
+ " 0.000054 | \n",
+ " NA | \n",
" 0.000012 | \n",
"
\n",
" \n",
- " SAMEA5818826 | \n",
- " STN014 | \n",
- " [1485:1635] | \n",
- " [-536:-386] | \n",
- " Switzerland | \n",
- " Nidwalden | \n",
- " 46.798562 | \n",
- " 8.231974 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Second Pandemic | \n",
- " 1.PRE | \n",
- " 1.PRE1 | \n",
- " SAMEA5818826 | \n",
- " KEEP: SRA Ancient | \n",
- " 1 | \n",
- " Europe | \n",
- " 1560.0 | \n",
- " 461.0 | \n",
- " 75.0 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Human | \n",
- " #8000ff | \n",
- " 8.0 | \n",
- " POINT (8.41198 46.94276) | \n",
- " 0.000012 | \n",
+ " GCA_009669555.1_ASM966955v1_genomic | \n",
+ " 42123 | \n",
+ " 2005.0 | \n",
+ " -16 | \n",
+ " China | \n",
+ " Xinjiang | \n",
+ " 35.000074 | \n",
+ " 104.999927 | \n",
+ " 42.4805 | \n",
+ " 85.4633 | \n",
+ " Antiqua | \n",
+ " 0.ANT | \n",
+ " 0.ANT1 | \n",
+ " SAMN07722924 | \n",
+ " KEEP: Assembly Modern | \n",
+ " 0 | \n",
+ " Asia | \n",
+ " 2005.0 | \n",
+ " 16.0 | \n",
+ " 0.0 | \n",
+ " 42.480495 | \n",
+ " 85.463346 | \n",
+ " Non-Human | \n",
+ " Illumina Hiseq 2000 | \n",
+ " SOAPdenovo v. 2.04 | \n",
+ " Frontopsylla elatoides | \n",
+ " Siphonaptera | \n",
+ " #238af5 | \n",
+ " 0.ANT | \n",
+ " POINT (85.46335 42.48050) | \n",
+ " 0.000055 | \n",
+ " NA | \n",
" 0.000012 | \n",
"
\n",
" \n",
- " SAMEA5818825 | \n",
- " STN013 | \n",
- " [1485:1635] | \n",
- " [-536:-386] | \n",
- " Switzerland | \n",
- " Nidwalden | \n",
- " 46.798562 | \n",
- " 8.231974 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Second Pandemic | \n",
- " 1.PRE | \n",
- " 1.PRE1 | \n",
- " SAMEA5818825 | \n",
- " KEEP: SRA Ancient | \n",
- " 1 | \n",
- " Europe | \n",
- " 1560.0 | \n",
- " 461.0 | \n",
- " 75.0 | \n",
- " 46.942756 | \n",
- " 8.411977 | \n",
- " Human | \n",
- " #8000ff | \n",
- " 8.0 | \n",
- " POINT (8.41198 46.94276) | \n",
- " 0.000012 | \n",
+ " GCA_009669565.1_ASM966956v1_genomic | \n",
+ " 42118 | \n",
+ " 2005.0 | \n",
+ " -16 | \n",
+ " China | \n",
+ " Xinjiang | \n",
+ " 35.000074 | \n",
+ " 104.999927 | \n",
+ " 42.4805 | \n",
+ " 85.4633 | \n",
+ " Antiqua | \n",
+ " 0.ANT | \n",
+ " 0.ANT1 | \n",
+ " SAMN07722923 | \n",
+ " KEEP: Assembly Modern | \n",
+ " 0 | \n",
+ " Asia | \n",
+ " 2005.0 | \n",
+ " 16.0 | \n",
+ " 0.0 | \n",
+ " 42.480495 | \n",
+ " 85.463346 | \n",
+ " Non-Human | \n",
+ " Illumina Hiseq 2000 | \n",
+ " SOAPdenovo v. 2.04 | \n",
+ " Citellus undulatus | \n",
+ " Rodentia | \n",
+ " #238af5 | \n",
+ " 0.ANT | \n",
+ " POINT (85.46335 42.48050) | \n",
+ " 0.000055 | \n",
+ " NA | \n",
" 0.000012 | \n",
"
\n",
" \n",
@@ -1137,348 +580,516 @@
" ... | \n",
" ... | \n",
" ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
"
\n",
" \n",
- " D75 | \n",
- " G861x1035 | \n",
- " [1200:1560] | \n",
- " [-821:-461] | \n",
- " Denmark | \n",
- " Region of Southern Denmark | \n",
- " 55.670249 | \n",
- " 10.333328 | \n",
- " 55.378426 | \n",
- " 9.131806 | \n",
+ " SAMEA7313243_45 | \n",
+ " Azov38 | \n",
+ " [1400:1700] | \n",
+ " [-621:-321] | \n",
+ " Russia | \n",
+ " Rostov Oblast | \n",
+ " 64.686314 | \n",
+ " 97.745306 | \n",
+ " 47.6222 | \n",
+ " 40.7958 | \n",
" Second Pandemic | \n",
" 1.PRE | \n",
" 1.PRE1 | \n",
- " D75 | \n",
- " KEEP: Local Ancient Denmark | \n",
+ " SAMEA7313243_45 | \n",
+ " KEEP: SRA Ancient Combined Record | \n",
" 1 | \n",
" Europe | \n",
- " 1380.0 | \n",
- " 641.0 | \n",
- " 180.0 | \n",
- " 55.378426 | \n",
- " 9.131806 | \n",
+ " 1550.0 | \n",
+ " 471.0 | \n",
+ " 150.0 | \n",
+ " 47.622245 | \n",
+ " 40.795794 | \n",
+ " Human | \n",
+ " NextSeq 500 | \n",
+ " NA | \n",
+ " Homo sapiens | \n",
" Human | \n",
- " #8000ff | \n",
- " 5.0 | \n",
- " POINT (9.13181 55.37843) | \n",
- " 0.000011 | \n",
- " 0.000011 | \n",
+ " #f3c16a | \n",
+ " 1.PRE | \n",
+ " POINT (40.79579 47.62225) | \n",
+ " 0.000075 | \n",
+ " NA | \n",
+ " 0.000022 | \n",
"
\n",
" \n",
- " P187 | \n",
- " A146x3011 | \n",
- " [1150:1574] | \n",
- " [-871:-447] | \n",
- " Denmark | \n",
- " Central Denmark Region | \n",
- " 55.670249 | \n",
- " 10.333328 | \n",
- " 56.235648 | \n",
- " 9.234625 | \n",
+ " SAMEA7313246_49 | \n",
+ " Gdansk8 | \n",
+ " [1400:1700] | \n",
+ " [-621:-321] | \n",
+ " Poland | \n",
+ " Pomeranian Voivodeship | \n",
+ " 52.215933 | \n",
+ " 19.134422 | \n",
+ " 54.2456 | \n",
+ " 18.1099 | \n",
" Second Pandemic | \n",
" 1.PRE | \n",
" 1.PRE1 | \n",
- " P187 | \n",
- " KEEP: Local Ancient Denmark | \n",
+ " SAMEA7313246_49 | \n",
+ " KEEP: SRA Ancient Combined Record | \n",
" 1 | \n",
" Europe | \n",
- " 1362.0 | \n",
- " 659.0 | \n",
- " 212.0 | \n",
- " 56.235648 | \n",
- " 9.234625 | \n",
+ " 1550.0 | \n",
+ " 471.0 | \n",
+ " 150.0 | \n",
+ " 54.245560 | \n",
+ " 18.109900 | \n",
" Human | \n",
- " #8000ff | \n",
- " 4.0 | \n",
- " POINT (9.23463 56.23565) | \n",
- " 0.000007 | \n",
+ " NextSeq 500 | \n",
+ " NA | \n",
+ " Homo sapiens | \n",
+ " Human | \n",
+ " #f3c16a | \n",
+ " 1.PRE | \n",
+ " POINT (18.10990 54.24556) | \n",
+ " 0.000060 | \n",
+ " NA | \n",
" 0.000007 | \n",
"
\n",
" \n",
- " P212 | \n",
- " G371 | \n",
- " [1150:1350] | \n",
- " [-871:-671] | \n",
- " Denmark | \n",
- " Central Denmark Region | \n",
- " 55.670249 | \n",
- " 10.333328 | \n",
- " 56.235648 | \n",
- " 9.234625 | \n",
+ " SAMEA6651390 | \n",
+ " AGU010 | \n",
+ " [1435:1477] | \n",
+ " [-586:-544] | \n",
+ " Lithuania | \n",
+ " Vilnius County | \n",
+ " 55.350000 | \n",
+ " 23.750000 | \n",
+ " 54.8227 | \n",
+ " 25.2495 | \n",
" Second Pandemic | \n",
" 1.PRE | \n",
" 1.PRE1 | \n",
- " P212 | \n",
- " KEEP: Local Ancient Denmark | \n",
+ " SAMEA6651390 | \n",
+ " KEEP: SRA Ancient | \n",
" 1 | \n",
" Europe | \n",
- " 1250.0 | \n",
- " 771.0 | \n",
- " 100.0 | \n",
- " 56.235648 | \n",
- " 9.234625 | \n",
+ " 1456.0 | \n",
+ " 565.0 | \n",
+ " 21.0 | \n",
+ " 54.822692 | \n",
+ " 25.249534 | \n",
+ " Human | \n",
+ " NextSeq 500 | \n",
+ " NA | \n",
+ " Homo sapiens | \n",
" Human | \n",
- " #8000ff | \n",
- " 4.0 | \n",
- " POINT (9.23463 56.23565) | \n",
- " 0.000009 | \n",
- " 0.000009 | \n",
+ " #f3c16a | \n",
+ " 1.PRE | \n",
+ " POINT (25.24953 54.82269) | \n",
+ " 0.000060 | \n",
+ " NA | \n",
+ " 0.000006 | \n",
"
\n",
" \n",
- " P387 | \n",
- " A1480x1480 | \n",
- " [1100:1500] | \n",
- " [-921:-521] | \n",
- " Denmark | \n",
- " Central Denmark Region | \n",
- " 55.670249 | \n",
- " 10.333328 | \n",
- " 56.235648 | \n",
- " 9.234625 | \n",
+ " SAMEA6637004 | \n",
+ " AGU025 | \n",
+ " [1441:1612] | \n",
+ " [-580:-409] | \n",
+ " Lithuania | \n",
+ " Vilnius County | \n",
+ " 55.350000 | \n",
+ " 23.750000 | \n",
+ " 54.8227 | \n",
+ " 25.2495 | \n",
" Second Pandemic | \n",
" 1.PRE | \n",
" 1.PRE1 | \n",
- " P387 | \n",
- " KEEP: Local Ancient Denmark | \n",
+ " SAMEA6637004 | \n",
+ " KEEP: SRA Ancient | \n",
" 1 | \n",
" Europe | \n",
- " 1300.0 | \n",
- " 721.0 | \n",
- " 200.0 | \n",
- " 56.235648 | \n",
- " 9.234625 | \n",
+ " 1526.5 | \n",
+ " 494.5 | \n",
+ " 85.5 | \n",
+ " 54.822692 | \n",
+ " 25.249534 | \n",
+ " Human | \n",
+ " NextSeq 500 | \n",
+ " NA | \n",
+ " Homo sapiens | \n",
" Human | \n",
- " #8000ff | \n",
- " 4.0 | \n",
- " POINT (9.23463 56.23565) | \n",
- " 0.000009 | \n",
- " 0.000009 | \n",
+ " #f3c16a | \n",
+ " 1.PRE | \n",
+ " POINT (25.24953 54.82269) | \n",
+ " 0.000061 | \n",
+ " NA | \n",
+ " 0.000007 | \n",
"
\n",
" \n",
- " R36 | \n",
- " G25Bx98 | \n",
- " [1200:1560] | \n",
- " [-821:-461] | \n",
- " Denmark | \n",
- " Region of Southern Denmark | \n",
- " 55.670249 | \n",
- " 10.333328 | \n",
- " 55.378426 | \n",
- " 9.131806 | \n",
+ " SAMEA6637002 | \n",
+ " AGU007B | \n",
+ " [1463:1632] | \n",
+ " [-558:-389] | \n",
+ " Lithuania | \n",
+ " Vilnius County | \n",
+ " 55.350000 | \n",
+ " 23.750000 | \n",
+ " 54.8227 | \n",
+ " 25.2495 | \n",
" Second Pandemic | \n",
" 1.PRE | \n",
" 1.PRE1 | \n",
- " R36 | \n",
- " KEEP: Local Ancient Denmark | \n",
+ " SAMEA6637002 | \n",
+ " KEEP: SRA Ancient | \n",
" 1 | \n",
" Europe | \n",
- " 1380.0 | \n",
- " 641.0 | \n",
- " 180.0 | \n",
- " 55.378426 | \n",
- " 9.131806 | \n",
+ " 1547.5 | \n",
+ " 473.5 | \n",
+ " 84.5 | \n",
+ " 54.822692 | \n",
+ " 25.249534 | \n",
+ " Human | \n",
+ " Illumina HiSeq 4000 | \n",
+ " NA | \n",
+ " Homo sapiens | \n",
" Human | \n",
- " #8000ff | \n",
- " 5.0 | \n",
- " POINT (9.13181 55.37843) | \n",
- " 0.000003 | \n",
- " 0.000003 | \n",
+ " #f3c16a | \n",
+ " 1.PRE | \n",
+ " POINT (25.24953 54.82269) | \n",
+ " 0.000060 | \n",
+ " NA | \n",
+ " 0.000006 | \n",
"
\n",
" \n",
"\n",
- "49 rows × 27 columns
\n",
+ "601 rows × 32 columns
\n",
""
],
"text/plain": [
- " strain date date_bp country \\\n",
- "sample \n",
- "SAMEA5818830 STN021 [1485:1635] [-536:-386] Switzerland \n",
- "SAMEA5818829 STN020 [1485:1635] [-536:-386] Switzerland \n",
- "SAMEA5818828 STN019 [1485:1635] [-536:-386] Switzerland \n",
- "SAMEA5818826 STN014 [1485:1635] [-536:-386] Switzerland \n",
- "SAMEA5818825 STN013 [1485:1635] [-536:-386] Switzerland \n",
- "... ... ... ... ... \n",
- "D75 G861x1035 [1200:1560] [-821:-461] Denmark \n",
- "P187 A146x3011 [1150:1574] [-871:-447] Denmark \n",
- "P212 G371 [1150:1350] [-871:-671] Denmark \n",
- "P387 A1480x1480 [1100:1500] [-921:-521] Denmark \n",
- "R36 G25Bx98 [1200:1560] [-821:-461] Denmark \n",
+ " strain date date_bp \\\n",
+ "sample \n",
+ "Reference CO92 1992 -29 \n",
+ "GCA_009909635.1_ASM990963v1_genomic 9_10 1923.0 -98 \n",
+ "GCA_009669545.1_ASM966954v1_genomic 42126 2006.0 -15 \n",
+ "GCA_009669555.1_ASM966955v1_genomic 42123 2005.0 -16 \n",
+ "GCA_009669565.1_ASM966956v1_genomic 42118 2005.0 -16 \n",
+ "... ... ... ... \n",
+ "SAMEA7313243_45 Azov38 [1400:1700] [-621:-321] \n",
+ "SAMEA7313246_49 Gdansk8 [1400:1700] [-621:-321] \n",
+ "SAMEA6651390 AGU010 [1435:1477] [-586:-544] \n",
+ "SAMEA6637004 AGU025 [1441:1612] [-580:-409] \n",
+ "SAMEA6637002 AGU007B [1463:1632] [-558:-389] \n",
"\n",
- " province country_lat country_lon \\\n",
- "sample \n",
- "SAMEA5818830 Nidwalden 46.798562 8.231974 \n",
- "SAMEA5818829 Nidwalden 46.798562 8.231974 \n",
- "SAMEA5818828 Nidwalden 46.798562 8.231974 \n",
- "SAMEA5818826 Nidwalden 46.798562 8.231974 \n",
- "SAMEA5818825 Nidwalden 46.798562 8.231974 \n",
- "... ... ... ... \n",
- "D75 Region of Southern Denmark 55.670249 10.333328 \n",
- "P187 Central Denmark Region 55.670249 10.333328 \n",
- "P212 Central Denmark Region 55.670249 10.333328 \n",
- "P387 Central Denmark Region 55.670249 10.333328 \n",
- "R36 Region of Southern Denmark 55.670249 10.333328 \n",
+ " country \\\n",
+ "sample \n",
+ "Reference United States of America \n",
+ "GCA_009909635.1_ASM990963v1_genomic Russia \n",
+ "GCA_009669545.1_ASM966954v1_genomic China \n",
+ "GCA_009669555.1_ASM966955v1_genomic China \n",
+ "GCA_009669565.1_ASM966956v1_genomic China \n",
+ "... ... \n",
+ "SAMEA7313243_45 Russia \n",
+ "SAMEA7313246_49 Poland \n",
+ "SAMEA6651390 Lithuania \n",
+ "SAMEA6637004 Lithuania \n",
+ "SAMEA6637002 Lithuania \n",
"\n",
- " province_lat province_lon biovar branch_major \\\n",
- "sample \n",
- "SAMEA5818830 46.942756 8.411977 Second Pandemic 1.PRE \n",
- "SAMEA5818829 46.942756 8.411977 Second Pandemic 1.PRE \n",
- "SAMEA5818828 46.942756 8.411977 Second Pandemic 1.PRE \n",
- "SAMEA5818826 46.942756 8.411977 Second Pandemic 1.PRE \n",
- "SAMEA5818825 46.942756 8.411977 Second Pandemic 1.PRE \n",
- "... ... ... ... ... \n",
- "D75 55.378426 9.131806 Second Pandemic 1.PRE \n",
- "P187 56.235648 9.234625 Second Pandemic 1.PRE \n",
- "P212 56.235648 9.234625 Second Pandemic 1.PRE \n",
- "P387 56.235648 9.234625 Second Pandemic 1.PRE \n",
- "R36 55.378426 9.131806 Second Pandemic 1.PRE \n",
+ " province country_lat \\\n",
+ "sample \n",
+ "Reference Colorado 39.783730 \n",
+ "GCA_009909635.1_ASM990963v1_genomic Rostov Oblast 64.686314 \n",
+ "GCA_009669545.1_ASM966954v1_genomic Xinjiang 35.000074 \n",
+ "GCA_009669555.1_ASM966955v1_genomic Xinjiang 35.000074 \n",
+ "GCA_009669565.1_ASM966956v1_genomic Xinjiang 35.000074 \n",
+ "... ... ... \n",
+ "SAMEA7313243_45 Rostov Oblast 64.686314 \n",
+ "SAMEA7313246_49 Pomeranian Voivodeship 52.215933 \n",
+ "SAMEA6651390 Vilnius County 55.350000 \n",
+ "SAMEA6637004 Vilnius County 55.350000 \n",
+ "SAMEA6637002 Vilnius County 55.350000 \n",
"\n",
- " branch_minor biosample_accession biosample_comment \\\n",
+ " country_lon province_lat province_lon \\\n",
"sample \n",
- "SAMEA5818830 1.PRE1 SAMEA5818830 KEEP: SRA Ancient \n",
- "SAMEA5818829 1.PRE1 SAMEA5818829 KEEP: SRA Ancient \n",
- "SAMEA5818828 1.PRE1 SAMEA5818828 KEEP: SRA Ancient \n",
- "SAMEA5818826 1.PRE1 SAMEA5818826 KEEP: SRA Ancient \n",
- "SAMEA5818825 1.PRE1 SAMEA5818825 KEEP: SRA Ancient \n",
- "... ... ... ... \n",
- "D75 1.PRE1 D75 KEEP: Local Ancient Denmark \n",
- "P187 1.PRE1 P187 KEEP: Local Ancient Denmark \n",
- "P212 1.PRE1 P212 KEEP: Local Ancient Denmark \n",
- "P387 1.PRE1 P387 KEEP: Local Ancient Denmark \n",
- "R36 1.PRE1 R36 KEEP: Local Ancient Denmark \n",
+ "Reference -100.445882 38.7252 -105.608 \n",
+ "GCA_009909635.1_ASM990963v1_genomic 97.745306 47.6222 40.7958 \n",
+ "GCA_009669545.1_ASM966954v1_genomic 104.999927 42.4805 85.4633 \n",
+ "GCA_009669555.1_ASM966955v1_genomic 104.999927 42.4805 85.4633 \n",
+ "GCA_009669565.1_ASM966956v1_genomic 104.999927 42.4805 85.4633 \n",
+ "... ... ... ... \n",
+ "SAMEA7313243_45 97.745306 47.6222 40.7958 \n",
+ "SAMEA7313246_49 19.134422 54.2456 18.1099 \n",
+ "SAMEA6651390 23.750000 54.8227 25.2495 \n",
+ "SAMEA6637004 23.750000 54.8227 25.2495 \n",
+ "SAMEA6637002 23.750000 54.8227 25.2495 \n",
"\n",
- " branch_number continent date_mean date_bp_mean date_err \\\n",
- "sample \n",
- "SAMEA5818830 1 Europe 1560.0 461.0 75.0 \n",
- "SAMEA5818829 1 Europe 1560.0 461.0 75.0 \n",
- "SAMEA5818828 1 Europe 1560.0 461.0 75.0 \n",
- "SAMEA5818826 1 Europe 1560.0 461.0 75.0 \n",
- "SAMEA5818825 1 Europe 1560.0 461.0 75.0 \n",
- "... ... ... ... ... ... \n",
- "D75 1 Europe 1380.0 641.0 180.0 \n",
- "P187 1 Europe 1362.0 659.0 212.0 \n",
- "P212 1 Europe 1250.0 771.0 100.0 \n",
- "P387 1 Europe 1300.0 721.0 200.0 \n",
- "R36 1 Europe 1380.0 641.0 180.0 \n",
+ " biovar branch_major \\\n",
+ "sample \n",
+ "Reference Orientalis 1.ORI \n",
+ "GCA_009909635.1_ASM990963v1_genomic Medievalis 2.MED \n",
+ "GCA_009669545.1_ASM966954v1_genomic Antiqua 0.ANT \n",
+ "GCA_009669555.1_ASM966955v1_genomic Antiqua 0.ANT \n",
+ "GCA_009669565.1_ASM966956v1_genomic Antiqua 0.ANT \n",
+ "... ... ... \n",
+ "SAMEA7313243_45 Second Pandemic 1.PRE \n",
+ "SAMEA7313246_49 Second Pandemic 1.PRE \n",
+ "SAMEA6651390 Second Pandemic 1.PRE \n",
+ "SAMEA6637004 Second Pandemic 1.PRE \n",
+ "SAMEA6637002 Second Pandemic 1.PRE \n",
+ "\n",
+ " branch_minor biosample_accession \\\n",
+ "sample \n",
+ "Reference 1.ORI1 SAMEA1705942 \n",
+ "GCA_009909635.1_ASM990963v1_genomic 2.MED1 SAMN13632815 \n",
+ "GCA_009669545.1_ASM966954v1_genomic 0.ANT1 SAMN07722925 \n",
+ "GCA_009669555.1_ASM966955v1_genomic 0.ANT1 SAMN07722924 \n",
+ "GCA_009669565.1_ASM966956v1_genomic 0.ANT1 SAMN07722923 \n",
+ "... ... ... \n",
+ "SAMEA7313243_45 1.PRE1 SAMEA7313243_45 \n",
+ "SAMEA7313246_49 1.PRE1 SAMEA7313246_49 \n",
+ "SAMEA6651390 1.PRE1 SAMEA6651390 \n",
+ "SAMEA6637004 1.PRE1 SAMEA6637004 \n",
+ "SAMEA6637002 1.PRE1 SAMEA6637002 \n",
+ "\n",
+ " biosample_comment \\\n",
+ "sample \n",
+ "Reference KEEP: Assembly Modern Reference \n",
+ "GCA_009909635.1_ASM990963v1_genomic KEEP: Assembly Modern \n",
+ "GCA_009669545.1_ASM966954v1_genomic KEEP: Assembly Modern \n",
+ "GCA_009669555.1_ASM966955v1_genomic KEEP: Assembly Modern \n",
+ "GCA_009669565.1_ASM966956v1_genomic KEEP: Assembly Modern \n",
+ "... ... \n",
+ "SAMEA7313243_45 KEEP: SRA Ancient Combined Record \n",
+ "SAMEA7313246_49 KEEP: SRA Ancient Combined Record \n",
+ "SAMEA6651390 KEEP: SRA Ancient \n",
+ "SAMEA6637004 KEEP: SRA Ancient \n",
+ "SAMEA6637002 KEEP: SRA Ancient \n",
+ "\n",
+ " branch_number continent date_mean \\\n",
+ "sample \n",
+ "Reference 1 North America 1992.0 \n",
+ "GCA_009909635.1_ASM990963v1_genomic 2 Europe 1923.0 \n",
+ "GCA_009669545.1_ASM966954v1_genomic 0 Asia 2006.0 \n",
+ "GCA_009669555.1_ASM966955v1_genomic 0 Asia 2005.0 \n",
+ "GCA_009669565.1_ASM966956v1_genomic 0 Asia 2005.0 \n",
+ "... ... ... ... \n",
+ "SAMEA7313243_45 1 Europe 1550.0 \n",
+ "SAMEA7313246_49 1 Europe 1550.0 \n",
+ "SAMEA6651390 1 Europe 1456.0 \n",
+ "SAMEA6637004 1 Europe 1526.5 \n",
+ "SAMEA6637002 1 Europe 1547.5 \n",
+ "\n",
+ " date_bp_mean date_err lat \\\n",
+ "sample \n",
+ "Reference 29.0 0.0 38.725178 \n",
+ "GCA_009909635.1_ASM990963v1_genomic 98.0 0.0 47.622245 \n",
+ "GCA_009669545.1_ASM966954v1_genomic 15.0 0.0 42.480495 \n",
+ "GCA_009669555.1_ASM966955v1_genomic 16.0 0.0 42.480495 \n",
+ "GCA_009669565.1_ASM966956v1_genomic 16.0 0.0 42.480495 \n",
+ "... ... ... ... \n",
+ "SAMEA7313243_45 471.0 150.0 47.622245 \n",
+ "SAMEA7313246_49 471.0 150.0 54.245560 \n",
+ "SAMEA6651390 565.0 21.0 54.822692 \n",
+ "SAMEA6637004 494.5 85.5 54.822692 \n",
+ "SAMEA6637002 473.5 84.5 54.822692 \n",
+ "\n",
+ " lon host_human \\\n",
+ "sample \n",
+ "Reference -105.607716 Human \n",
+ "GCA_009909635.1_ASM990963v1_genomic 40.795794 Human \n",
+ "GCA_009669545.1_ASM966954v1_genomic 85.463346 Non-Human \n",
+ "GCA_009669555.1_ASM966955v1_genomic 85.463346 Non-Human \n",
+ "GCA_009669565.1_ASM966956v1_genomic 85.463346 Non-Human \n",
+ "... ... ... \n",
+ "SAMEA7313243_45 40.795794 Human \n",
+ "SAMEA7313246_49 18.109900 Human \n",
+ "SAMEA6651390 25.249534 Human \n",
+ "SAMEA6637004 25.249534 Human \n",
+ "SAMEA6637002 25.249534 Human \n",
+ "\n",
+ " sequencing_technology assembly_method \\\n",
+ "sample \n",
+ "Reference NA NA \n",
+ "GCA_009909635.1_ASM990963v1_genomic IonTorrent Newbler v. 2.6 \n",
+ "GCA_009669545.1_ASM966954v1_genomic Illumina Hiseq 2000 SOAPdenovo v. 2.04 \n",
+ "GCA_009669555.1_ASM966955v1_genomic Illumina Hiseq 2000 SOAPdenovo v. 2.04 \n",
+ "GCA_009669565.1_ASM966956v1_genomic Illumina Hiseq 2000 SOAPdenovo v. 2.04 \n",
+ "... ... ... \n",
+ "SAMEA7313243_45 NextSeq 500 NA \n",
+ "SAMEA7313246_49 NextSeq 500 NA \n",
+ "SAMEA6651390 NextSeq 500 NA \n",
+ "SAMEA6637004 NextSeq 500 NA \n",
+ "SAMEA6637002 Illumina HiSeq 4000 NA \n",
+ "\n",
+ " host_raw host_order \\\n",
+ "sample \n",
+ "Reference Human Human \n",
+ "GCA_009909635.1_ASM990963v1_genomic Homo sapiens Human \n",
+ "GCA_009669545.1_ASM966954v1_genomic Citellus undulatus Rodentia \n",
+ "GCA_009669555.1_ASM966955v1_genomic Frontopsylla elatoides Siphonaptera \n",
+ "GCA_009669565.1_ASM966956v1_genomic Citellus undulatus Rodentia \n",
+ "... ... ... \n",
+ "SAMEA7313243_45 Homo sapiens Human \n",
+ "SAMEA7313246_49 Homo sapiens Human \n",
+ "SAMEA6651390 Homo sapiens Human \n",
+ "SAMEA6637004 Homo sapiens Human \n",
+ "SAMEA6637002 Homo sapiens Human \n",
"\n",
- " lat lon host_human branch_major_color \\\n",
+ " population_color population \\\n",
"sample \n",
- "SAMEA5818830 46.942756 8.411977 Human #8000ff \n",
- "SAMEA5818829 46.942756 8.411977 Human #8000ff \n",
- "SAMEA5818828 46.942756 8.411977 Human #8000ff \n",
- "SAMEA5818826 46.942756 8.411977 Human #8000ff \n",
- "SAMEA5818825 46.942756 8.411977 Human #8000ff \n",
- "... ... ... ... ... \n",
- "D75 55.378426 9.131806 Human #8000ff \n",
- "P187 56.235648 9.234625 Human #8000ff \n",
- "P212 56.235648 9.234625 Human #8000ff \n",
- "P387 56.235648 9.234625 Human #8000ff \n",
- "R36 55.378426 9.131806 Human #8000ff \n",
+ "Reference #ff0000 1.ORI \n",
+ "GCA_009909635.1_ASM990963v1_genomic #c5e88a 2.MED \n",
+ "GCA_009669545.1_ASM966954v1_genomic #238af5 0.ANT \n",
+ "GCA_009669555.1_ASM966955v1_genomic #238af5 0.ANT \n",
+ "GCA_009669565.1_ASM966956v1_genomic #238af5 0.ANT \n",
+ "... ... ... \n",
+ "SAMEA7313243_45 #f3c16a 1.PRE \n",
+ "SAMEA7313246_49 #f3c16a 1.PRE \n",
+ "SAMEA6651390 #f3c16a 1.PRE \n",
+ "SAMEA6637004 #f3c16a 1.PRE \n",
+ "SAMEA6637002 #f3c16a 1.PRE \n",
"\n",
- " geometry_size geometry root_rtt_dist \\\n",
- "sample \n",
- "SAMEA5818830 8.0 POINT (8.41198 46.94276) 0.000012 \n",
- "SAMEA5818829 8.0 POINT (8.41198 46.94276) 0.000012 \n",
- "SAMEA5818828 8.0 POINT (8.41198 46.94276) 0.000012 \n",
- "SAMEA5818826 8.0 POINT (8.41198 46.94276) 0.000012 \n",
- "SAMEA5818825 8.0 POINT (8.41198 46.94276) 0.000012 \n",
- "... ... ... ... \n",
- "D75 5.0 POINT (9.13181 55.37843) 0.000011 \n",
- "P187 4.0 POINT (9.23463 56.23565) 0.000007 \n",
- "P212 4.0 POINT (9.23463 56.23565) 0.000009 \n",
- "P387 4.0 POINT (9.23463 56.23565) 0.000009 \n",
- "R36 5.0 POINT (9.13181 55.37843) 0.000003 \n",
+ " geometry \\\n",
+ "sample \n",
+ "Reference POINT (-105.60772 38.72518) \n",
+ "GCA_009909635.1_ASM990963v1_genomic POINT (40.79579 47.62225) \n",
+ "GCA_009669545.1_ASM966954v1_genomic POINT (85.46335 42.48050) \n",
+ "GCA_009669555.1_ASM966955v1_genomic POINT (85.46335 42.48050) \n",
+ "GCA_009669565.1_ASM966956v1_genomic POINT (85.46335 42.48050) \n",
+ "... ... \n",
+ "SAMEA7313243_45 POINT (40.79579 47.62225) \n",
+ "SAMEA7313246_49 POINT (18.10990 54.24556) \n",
+ "SAMEA6651390 POINT (25.24953 54.82269) \n",
+ "SAMEA6637004 POINT (25.24953 54.82269) \n",
+ "SAMEA6637002 POINT (25.24953 54.82269) \n",
+ "\n",
+ " root_rtt_dist clade_rtt_dist \\\n",
+ "sample \n",
+ "Reference 0.000073 NA \n",
+ "GCA_009909635.1_ASM990963v1_genomic 0.000073 NA \n",
+ "GCA_009669545.1_ASM966954v1_genomic 0.000054 NA \n",
+ "GCA_009669555.1_ASM966955v1_genomic 0.000055 NA \n",
+ "GCA_009669565.1_ASM966956v1_genomic 0.000055 NA \n",
+ "... ... ... \n",
+ "SAMEA7313243_45 0.000075 NA \n",
+ "SAMEA7313246_49 0.000060 NA \n",
+ "SAMEA6651390 0.000060 NA \n",
+ "SAMEA6637004 0.000061 NA \n",
+ "SAMEA6637002 0.000060 NA \n",
"\n",
- " clade_rtt_dist \n",
- "sample \n",
- "SAMEA5818830 0.000012 \n",
- "SAMEA5818829 0.000012 \n",
- "SAMEA5818828 0.000012 \n",
- "SAMEA5818826 0.000012 \n",
- "SAMEA5818825 0.000012 \n",
- "... ... \n",
- "D75 0.000011 \n",
- "P187 0.000007 \n",
- "P212 0.000009 \n",
- "P387 0.000009 \n",
- "R36 0.000003 \n",
+ " population_rtt_dist \n",
+ "sample \n",
+ "Reference 0.000006 \n",
+ "GCA_009909635.1_ASM990963v1_genomic 0.000010 \n",
+ "GCA_009669545.1_ASM966954v1_genomic 0.000012 \n",
+ "GCA_009669555.1_ASM966955v1_genomic 0.000012 \n",
+ "GCA_009669565.1_ASM966956v1_genomic 0.000012 \n",
+ "... ... \n",
+ "SAMEA7313243_45 0.000022 \n",
+ "SAMEA7313246_49 0.000007 \n",
+ "SAMEA6651390 0.000006 \n",
+ "SAMEA6637004 0.000007 \n",
+ "SAMEA6637002 0.000006 \n",
"\n",
- "[49 rows x 27 columns]"
+ "[601 rows x 32 columns]"
]
},
"metadata": {},
"output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAEbCAYAAADeTl6JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAClQ0lEQVR4nOy9d5hcaXnmfZ9T4VQOXbFzjpJampEmADZr7NldL9gwgDEwxLHBZv2xmDUMjMGwa+LADDb441vby8KMB89ijMEyeMB4wdheoxkJZalb6hyqu6u6u7pyDud8f5TeV5W7qrs6v7/r0iWpwqlTVafOe58n3A8nSRIYDAaDwWAwDjP8Xu8Ag8FgMBgMxk7DBA+DwWAwGIxDDxM8DAaDwWAwDj1M8DAYDAaDwTj0MMHDYDAYDAbj0MMED4PBYDAYjEOPvNqdv/zLvyx5vd7d2hcGg8FgMBiMLXPp0qUfSpL0y+Xuqyp4vF4vLl68uDN7xWAwGAwGg9FAOI6zVrqPpbQYDAaDwWAcepjgYTAYDAaDcehhgofBYDAYDMahhwkeBoPBYDAYhx4meBgMBoPBYBx6mOBhMBgMBoNx6GGCh8FgMBgMxqGHCR4Gg8FgMBiHHiZ4GAwGg8FgHHqqOi0zGIy9RZIkSJIEURTpH47jKv4BQP9mMBgMxl2Y4GEcCDKZDBKJBFKpFDKZDLLZLBUD5I8gCJAkCZlMhj6G4zjwPE//FP+f/JHL5ZDJZFAoFJDLd/5nkU6nEYlEEI1GkUqlSoRLLBaDz+dDKpWqe9v525HL5VCr1VCpVCV/BEFg4ojBYBwZmOBh7DmiKCKdTiOVSiEUCiEYDEIURcjlchiNRgSDQXg8nl3bH5VKBZvNhp6enhJBIEkSFVv5yOVy+th0Oo1wOIxUKgWNRgONRkNF1OTkJLxe75aETCVkMhlkMhkVc8XiSRRFxONxJBIJAKBCyGg0wmq1QqVSNWxfGAwGY7/CBA9j11laWoLb7UYymaRpmkrspNDRaDTQarUQBAFarRYKhYL+3+Vy4datW0gmkwVRpUr7qlAoYDAYEIvFEI/Hy96vUCgKIkqZTKZh70Umk0EURWQyGfqZymQyqFQqKJVKqFQqGjmKxWKwWq1obW2FKIqIRqNIp9Nl/0iSBLlcTiNfJpMJer2+YfvNYDAYuwUTPIwdI5lMIhQKYW1tDZlMBpIkQa/Xo6WlBTabDWtra1hZWSkrEHYSmUwGnU4Ho9EIs9kMQRAQi8UQiUTg8XiQSqUQi8XqEiTpdBobGxtV70+n043Y/RKy2WzZzzCTySASiSASiRTczvM8QqEQXnjhhU0jTRzHQavV0j+NFGlHHVEUabRQLpcjm80iFovRNCTPH/6eEkmSEIlEEAwGkUwm6UWQwWCA2WyGTqdjaVdGw2CCh9FwJEnCzMwMlpeXS1I/gUAALpcLCoUCKpUKOp0OZrMZcrkcOp0OgUAAMpmsIBISDoe3XM9CkMlkaGlpQUtLC1QqFRKJBObn53Hr1q2GppcOAqIoIhQKFdzG8zyNQhkMBgiCAKvVCo1Gc6AWHFLgDQCrq6s0tZhOp8HzPDQaDURRRDAYhEwmg1KphFKphFqthk6ng06ngyAIO7qPoigilUohkUhgbm4O4XAYZrMZer0eCoUCSqUSPM9DrVbv6H7sJaIowuv1YmlpqeRYBACv1wsgl15uaWlBc3MzFArFbu8m45DBFS9I+Zw5c0a6ePHiLu4O47AQCoWwvLyMQCBAi4o3i3A4HA5wHIdEIoFgMFgilqqRL5JkMhnUajVdQBQKBcxmc8kJUxRFJBIJbGxsYGZmZkvv8zChUqnQ398Pi8Wy17tSEUmSsLCwgHA4jHg8jmQyCYfDAYVCgWQySVOgpEZJqVRCp9MhmUzSqF1+QTupf5LJZGhqaoLdbt/1hVWSpAMlKhuJKIqYnJzE6upq1d87z/M4deoUDAYDPZ8chQgYo344jrskSdKZcvexCM8RhoSTE4kEVCoVNBoNZDJZyeOCwSCWl5cRiUQgl8uhUqlo509TUxO9It7Y2EAmk4FCoYBer8fw8DCAXGrr0qVLVffFbDZDqVTSepFQKFSX4AGAoaGhksWadG0lEgn4/X4kEgkkEglaxJtIJOp+ncOIyWTCsWPH9v1VNMdxsFqtWF9fRywWAwCsrKyUPC6TydAUI8/z0Ol0cDqdsNvtu9KFVw9HVewAue9maGgI/f39CIfDiEajtG4umUzSdB85L9y+fZuKI0EQYDAYaGpaq9Xu9dth7HP21y+fsWtIkgSv10sjKRqNBoIglBU8BoMBcrkcsVgMkiQhlUohEolgY2MDLpcLfX19aGpqQjabxezsLFKpFNRqNQYHB2E0GiEIAu677z74fD6k02laWJt/ZU3qfeLxONbW1qoWMufD8zy0Wi30en3BFZ8kSRgbG4Pf70c2m23Y53ZYsVgs+17sEHQ6Hc6cOYNAIIDl5eWq37HNZsPIyAg4jkM6ncb8/Dytk2lvb68o8hm7i0wmg8lkgslkKnt/LBbD5OQk0uk0TCZTQSF9recKBoMJnkMGidqQVBIApFIpWCwWmM1m+rhoNIpoNIpMJgOVSlXVfya/cLUadrsdNpsNABCJRBAKhRAKhaBUKmG32+FwOMo+TxRF3Lp1C5FIBGq1GgaDAaFQqOqJjBQdd3V1lV2oOY7D8ePHkU6nEY1GEY/HkclkEI1GEYvFaBs8E0M5NjY2YLVaD0zdCMdxMJvNMJvNyGQyVNwSVCoVhoaGYDAYaARFkiSoVCoaNUgkEjRieZSjLAcBjUaDkydPAsgV6YdCIXoOi8VitAZNqVTu8Z4y9jNM8BwSYrEYVlZWsL6+jmQySW8nHUktLS0FtQKkQJNAigiz2WxBmmoz0uk0YrEY9XzR6/Xw+XyYnJxEJpMBz/MwGAxIJpP0tTUaDZqamgAA165do7UY5H2QVEUlOI6jhZ2pVKpqZIKk18LhMFwu15ErUK4Gx3Gw2+20SJmkNg/a4i+Xy3HixAmEQiH4/X6IogiLxVISLVAqlWhra9ubndxDMpkMQqEQIpEItVgQBAGdnZ0Hrg7G7XZjZmampFswHA7D7XZDoVCgr68P8Xic1mkBuWOd2FActOOb0ThY0fIhwO/3w+VyQRRF6rliNBphMBigUCgQj8cxMzMDn89HvVlIHY7FYoHBYEAqlcLExAR8Ph90Oh0GBgaQSCTAcRwsFkvBiTEQCNCTTnE7dF9fH9ra2mjtTDabRSaTgc/ng8vlooXLPT09NKJAOmsymQx1HZbJZJDL5eB5HtlslnbakHRZcQqrFkh3ElkU892X8//kj3KIxWIIhULUtO+wwfM8zGYzenp6WA3EAUSSJCQSCYTDYercnV+YTf4mv3fyx2AwwGAw7PXuQ5Ik+Hw+xGKxAv8orVZL29Xzo73bTV/JZDLo9Xo4HA44nc49FT/ZbBZerxfxeLxgZAzP8/T7YinX+mFFy4ccEtovRyQSwdjYGOLxOHXdTSQSSCaTCIfDWFpagkKhgE6no3nxSCSCy5cvAwAtDMyP+Gi1WvT19UEmk+HKlSsFaSGdTgdJkrC6ugqfz4dEIgGr1Yr29nZIkoS5uTkAwOzsLGZnZ6HRaKghHxE4pJiYnKwJPM/TNNZWrkx5nq9aJ1CNVCqFpaUlLC4u1v3c/QxxYQ6Hw0zwHABIOicQCCAYDCISiRREO9RqNYxGI3X41mg0UKlUexbJkSSJeuuEw2H4/X6Ew2Gk02lks9ldTylns1maCtvrSM/y8jJmZ2c3fZwgCBgZGYHRaMTy8jLi8TiUSiUUCgUEQYAgCFCpVEwY1QCL8BxgSCSCnDhIN0O5H3J+OiuVSlH/DwC0PidffJCCYvL/SpAOKCJYlEolRFHExsYGwuEwTWt1dXWB4zh4vV4qaBKJBDXkI1c4AApmW5GiRJK60mg0cDgcMBqNO/CJVkeSJESjUaysrJTtDDqoaDQaWmDO2L9IkoS1tTXcunWr4HYyIsRisUCj0ezR3pUSiUQwMTFBzzN7Ban3MxgM0Ov1UKvVey52CIlEAuvr6zRynX9hSdZmhUJBf5tEQBJ/qUwmQ0sEmODJUS3CwwTPASUYDOL27dslKSUSpSGhUdL94HA4tnwyrOYTQlx81Wo1DaGTE0ooFMLq6iqNLnEcRw0HbTZbwf6QFFgymYRGoykQWel0ms5/SiaTyGQyVJBVEng7zfLyMqampnb9dRuN2WxGd3c31Gr1genSOmpks1msrKxgeXm5ILVqNBoxODi4ZyJHFEXqjpzJZArSwiQ9vbCwsKd1c0qlEiaTqSQ9ZLVa6YVUfscomUlXDjLzb7OLwO1A7DIkSYLRaGQiZguwlNYhhIiLYkj+nqBUKulsKGLC19zcDLlcXiJkyP/j8Tj8fj9tXff7/ejp6UFHR0fBa7ndbkxMTBTcZrVaMTAwAAC4cuVKiceNUqlET08Prd1ZWVmB2+2mOfy2tjb09vZiaWkJXq8XsVgMqVQKcrkcPT09yGQyWFhYoKFwuVwOq9UKp9O5pVTVVmltbYUgCBgfHz9wbbFmsxlNTU2Qy+UQBAF6vX7fXPEyCslms1hdXYXb7aZiRy6Xo7u7Gy0tLdv+3kizgFKprHtbPp8PN2/e3Nbr7zSpVApra2slt+t0upKRKwS9Xo/u7u4SM9NEIoGrV68CuGt0CtwdNuxwOLbl0h2NRuH1emkqf2NjA06nk82uayAswnMA8Xq9GBsbq2iYp1QqaVeWz+dDJBKhjyVFe6QzSq/Xw2azIRgMIhAIwOl0oqOjAz/72c+ocDKbzRgdHaUnxGQyidnZWbqN4q4ws9mMwcFBjI2NIRAIgOM4dHV1wel0FpxY5+bmsLCwULDvJCJVaS5VZ2cnWltbEQ6HkUgk4PV6aZ2R1Wrd9bZUv9+Pa9eu7eprbhWdTgeTyYRwOAydTof+/v693iXGJly4cKGga5FcUDTiOJ+amsLy8jL9v1KphNPpRE9PD4BcFDOTyaCzsxMACgbo8jwPURRx8eJFZu1wB51Oh9OnT29JhPp8PiwvLyMajRZ4DOX/Xe42UvfIuMu+jvCQ7hyShmFUh1T2kzbiYqxWKwYHB7GwsIClpaWyzw8EAvT/4XC4IMdOToBKpZIKHr/fj5WVFbS2tgLIFdENDw/TsQwej4dugxQFyuVytLa2UmPAclc/wWCw7P5VG8K5srKCpaWlkpOsx+PB5OQkjEYj2traYLPZdtyCPh6Pl9RT7GcikQji8TiamprgdDr3encYVYjFYrh69WpJOkiv129b7GQyGbhcrgKxA+TOxU1NTUin03Swr9FohMvlKjvkV6PRwGAwFPgfHWW0Wm1J1HxjY4NaYwCg6T+1Wg2ZTIZMJoN0Og25XI5AILAl8dje3o7Ozs595yBezH4YobLnEZ6VlRUsLCxAEAS0trZWNKdrJNlslrZHe71ebGxs0FbI1tZWWkBLakT2K8lkEvPz80ilUtBqtfQKnhQO+/1+rK6uUnOu7YxQEAQBJ0+eLFsvIEkSLVDWarUQBAHz8/OYn58veFxLSwv6+vqoACGT1D0eT0OncJOhkIlEAjKZDN3d3bDZbDsS/SH7nUwm4fV6sbq6uqmP0F7gcDgKxi0AwD333HPkC5WJCMwv6E8mk1AqlTAajXvm20KKU2OxGNbX1+F2uwHcHa3R1tZWYKpYKy6XCwsLC2V/byqVCseOHUM2m8XExATi8Tjt3sy/SGJURq1Wo7W1FSaTCdFolF4QkRKCfEGjUqlot9p24TgOJpMJTU1NtICZNLOQP8RwU6FQUMG1W5AmmdHR0R1/rSNftEwiEfF4HKFQCOFwuOLiT0K1QC7KQWY8iaIISZKojwVpAySdTKRQj+R8twsJHSsUCvh8PsTjcTidTnqQ1qKW0+k0fD4f/aHlD++MRqMIBAKbDvQshnj3mM1mGI3GAkGY7yVx/fp1+Hy+kucbjUaMjo7S9xEKhahZYiqVKjAhrAbxy6kH0uVlMpnQ2traMAF05coVBINBcBwHQRBK6qj2Gr1ej46ODmg0GkSjUUQiEdq5stOTwfcT5Pgiv5ulpaWS+g4SESTHllqtRldXF2w22562dpNFi3RlSpIErVZb9z6VSyPnY7Vacfz4cQQCAVqvwjh8yOVyHD9+fMt1j/VGa3YzurOvU1o7zfLyMqanp2teHPMLUFOpFFZXVzd9DjGvy2azNIVD2ryVSiXUajW0Wm1JtIg4oBJhE4/HsbGxgVAohGQySethyKyg+fl5dHV1AchdqZ06dQqJRIJe/ZH2RJ1ORzui7HY75ufnq57k6iEej2N1dZX6tgwMDCCTycDr9WJ+fh6iKMJsNqOlpQUWiwUul6sg9aZUKuH3+6HVaisaoPl8PszNzdFOMzL8kbSq54eIA4EAdVnd7DtOp9MIBoMIBoNwu904efJkQ7xniOCVJAkymQx2ux2RSKSs4NsLwuEwxsbGIJPJYLFYYLPZjkQbqyRJBSnXakKadAFmMhlIkgSlUolkMkk9ilKpFEKhEJqammCz2XY18kv2rdpriqKImZkZAHcbFQRBgE6nK+i+s1qt1KS0HCQScZBStYz6yWQyWF9fp+fXeDyOdDpNhQk5hsi6JooijEYjeJ5HJpPBhQsXqNEtGelBfN5EUYQgCHQNJFH//cCeR3ii0Sh4nm/IDJ9MJkO7i8gXupf5ZUEQ6EmW4zg61VcQBPh8Pqyvr+/IpG6e50uMx/IdVxOJBBYXF0tM/chJlRykJAIik8kQi8XojyKTyeDEiRP0IJYkCYFAAH6/nz42kUhgZGQECoUCV65cKfHiaG5uht1uh8vlouKIXAGU6/4Ccikx0gGWjyRJWFhYgMvlqik8LAgCXbjIiIvtQl6XdHNcvnx5X4yxUKlUsFgsdNTCUShwFEURq6urcLlcNL1ITt6krotAorJkuChBpVLR+sJicUCccMmJnrQ+74SIJN5PkiSVdOtIkoRYLEbd0wOBAK5fv16yvxqNBhaLBVarlabBVlZWMDc3VxLhtdlsGBoawvr6OrxeL7xeb0PfD+PgolKp0NnZSeu6yIV2LajVajQ3N5d0+u4E+zrC4/f7MT09Da1WC6vVCrvdvuWr7kAggJWVFQSDwX3XKkxEwW7kwkVRRCQSKdt2aTAYMDAwAKfTSSMSpMWSLARTU1MFESGFQoH29nb09PQgm82W5H/JIMdIJAK32w2NRoPm5mZwHEct74tZW1ujP5hgMIiXvvSlkMlk1LujGLlcjubm5orvV6VSoa+vj87NWl9frxhhIamNSCRC01zbXahkMhmWlpbg8XgqtrvuFGTMBhmEqVKp6NX9fjJZ22nS6TT1q0mn01AqlbSLhZhbAqC3EUGaP3OJQC6ayp1HyMiRfJaXl+nvgAhMlUpV8JhEIoGZmRnwPA9BEMo6pOcP/yVuykBuFEsikcDa2hpNacViMSSTSfA8D7vdDp/PV3Z/yXw6l8sFpVIJq9UKs9kMtVpdIniICd6pU6f2TYSSsT9IJBJlL0RrIR6Pw+Px7IrgqcaeR3iWlpYwPT1dcJter4fT6YTdbt+SGVo6naZjAHYiglIrJJqyX+A4jrp5KhSKgpoAEonq6upCLBbD8vJyRdHIcRwMBgM9YZL5V4lEgi4iOp0O2Wy2pLOjHDzPY2BgAGq1uqyZIqGzsxPd3d0lty8sLGBubg48z+PEiRN0ESG314IgCOjo6Niyt4nH48Ht27frft52sNvt6OnpKVlYjxqSJMHtdmN6epqG2WuJruVHYMtBomFbvXiy2+0YGhqi28lkMrh48SISiQQsFguampqoiF9YWEAoFEIoFNrTNm9BEHD8+HFoNBrMz8/D5XLt2b4wDhcajQb333//jr/Ovo7wlIO0SgeDQWg0GkQiEVq/YTKZYLVaqy5KJCJhs9mwsbFRYNq1m+yl2CoHuSqs1kVUi4KXJInWwlSiniiHKIpVxYJSqYTD4ajYwdfS0gKr1QpBEGidQzweryscn0wmMTU1hdXVVRiNRnoM1Sp+djNH3UjjuYOOKIqYmpqiNVwqlaqmovdaUCgUZbdF0kJkUGclAoEAMplMQWq4vb0dU1NTEEURarUaXq8XwWCwpEV8L7DZbBgYGKCDhMsZ9jEYB5k9FzwkWpAfHSCsra1BoVAUhF2Xl5eh0WjQ19dXUH8Rj8fh8/kQCoUQDAbp0EqLxYKWlpYCd17G/kWpVOKee+6hbfQkNbOZwM2PBEajUVy5cqXqYtTe3o6mpibE43HMzs7Sx5KrbDL7q1Z2sgCYpKqISeR2anF8Ph9WVlaQTCah1WrR1tYGtVqNjY0NBINB+lmT+jeO49DS0oLe3t4Gv6vtk0wmMTY2hlAoVLfYIXVulRzLyfaLzz/k9tbWVoyOjiKTydBhlNFoFOl0GhqNBjqdDgaDASsrK/B4PDTdRS42/H7/vvKvIRYcxCyUwTiM7AvBMzIygmAwSA3rEokEHc6Yf7Jpa2ujk2Hz2+kikQimpqZKIg6s6O5goVarcfz4cYyNjaGlpQU6nW5TW3XSQUMGqWYymZIJ0uVIJBJQq9Uwm82wWq1YWFjA2toaZDIZBgcHK06fr4TBYMA999xTNSVXK4IgoK2tjXb7bcX2vxykLkWv10Mul8Pj8cDj8RRYMZRjdXWViq39ElEKBAIYHx+nF0m1ih2dToehoSHqryOKIrxeL8bHx8s+vpywJE7jKpUKdrud1uPkfzbLy8u4cOFCQZR3u8fFTpLNZusqQmUwDiJ7LnicTiftesjHYrEgEAjA6/XSE0VXV1fZ1kydTod77rkHbrcba2triMVitJUzFotBr9dDp9PRgjzG/kOj0eD48eO0mHhycpLeTuodSFskIRKJ4PLlywWLCrFb3wzShWI2m+FwONDX14fe3l5ayL0VjEYjOjs7t1XLI5fLcebMmR0Z5MlxHJqamqj1Aela2qxGZbOhiruJJElYXFwsqM3arBYnn8HBQeh0OgB3h3KSi6tyVPtsyMVYOp3G5cuXacrdbDbva8PS/U4sEoHrb/8Wercb4eZmtL/2tdDc+c4YBwsylFilUu0Ld/c9/1VWCs2TToeenp4CAZNvbldMc3NzSSdP/twXMqySsffwPA+n00n9Qux2O20vz0epVCIcDsPlcqG1tZWOqZDJZNDpdLjvvvuQzWZpjReZnh6JRLC+vo61tbWK9Vtk1pjP50MymWxIB4HZbC6bBqkVvV6/o1PL5XI5HA4HHd4ajUZLxIJcLofRaITRaITJZIJOp9vzdnYyyHZubo6mhXieh0KhqKmoWBAEdHZ2QqvVIpPJYGlpCUtLS5tGAsl5o9z5Znp6GqurqzCbzdBqtfB6vYhEImVHujBqIxaJIPDYY/it27fBAZAAfOPcOeDJJ5noOYAkEgm0tbXRsUR7zZ53adXLysoKbd0kQzLLFYySVIdcLqf+LLvdrl7PledRY2hoqETxp1IpiKKIlZUVpNNpOJ1OakoYj8cRi8XoYlxrtCEUCuHWrVsF6QS5XI6mpiZwHIeNjQ1kMhnI5XK87GUva0gUIxqNYnx8HNFotObncBwHh8OBnp6eXR+AKooiHalAbOf3QzQHAB0QW67dvxZhqdPp0NbWBrvdDp7nEQgEcOvWrZp/lyS6xSLDu8PkX/4l3v3VryL/6JMAfOU3fxMDb33rXu0WYxtwHIdjx47BarXu1usdrC6tarS0tNB/V7ry2myaOGNvUCqV6Ovrg8FgKCtSyUJPpjWLoohbt24hEomgo6ODCiQiZHmeRyQSQSwWoyaLxAk0k8lApVLBYDDg/vvvp87Hfr+fzvAym804deoUrW1p1CKv1Wpx+vRpzMzM1NR9w3Ec7rvvvrJzynYDklLeL+3tJBKbP5S2HJtFZ4aHh2G32+n3Kooibt68WdfYD1LULAgCEz27gG5lBcW/Qg6AlkXmdwWTyQSZTFZ1gHOtaLVaWls3NTWFpqamPY8UHzjBk0+5BWpxcRGzs7N7sDeMaphMJhw7dqyudA3P8+ju7i6oy5EkCbdv30ZHRwdMJhOmp6cLukoUCgUdD2AymdDR0QGz2Qy9Xg+9Xo/Ozk46mJFEjex2e6PfLnieR19fH1KpFNbX16s+VpIkxOPxPRM8+42JiQl4PJ6S24trO7p+7dcgVHBoN5lMJTYGPM/DarWW3XY5vB4PJp96CvbVVaza7Rh87DFY90EdwmEm3NwMCSiJ8ETzLnQZW4fjODoHsjhiarPZMDIyQkeU1LtdMsCaGGrudqS6Fg604CkHmVnVqOGNPM9TP5/9NBDyIGEwGHD8+PEtFXIWjxzhOK5g4q7BYCgQPPkpDuJW63A4YDabIZPJqP3/bkQ0OI7DwMAA7YiqFHFUqVR1d4UdNcrVdvzVCy/A+PnPl63t0Gg0ZSPAtUbxNlZXEX30Ufx+IpF7vaUlPPvoo8DTTzPRs4O0v/a1+Ma5c3hzfg3P0BDaHn54j/fsYNPe3o7W1taCESuXL19GOBxGU1MT2traYDab4fP56vKEksvlaGlpodve7xy4Gp5KJBIJRCIRCIKAjY2NmgoSN8NgMKC1tRW3b98uWKza29vR1dVFrd79fn/ZCeyCIFT1+Tgq3H///TsWvQiFQrh8+XLNj3/wwQfLCh2S1trJgmGCz+fDzMwMrfEpV890lCnnkL2V2g6n01lSExUMBrG0tFQQdZPJZNDr9XTECMdx+Nab34wPXbhQ8nqfPX0aL33qqe2/SUZFYpEIls6ehXZlBdGWFrQ9/DArWN4iGo0GQ0NDJQOagVxdpCRJUKvVdPZcpbpDpVIJi8UCmUwGt9sNuVyOzs5O2kCynzhUNTyVIIWFmUwGXV1daG1txdraGpRKJdLpNG1zrgXistva2orx8XFqgGe1WqmhmEwmg1arRXd3N7q7u+kYBfLlRyIR6hgdCoUgl8upXwyZxgxgy908BwVSW7NTqFSquiJ68Xi8RPBks1lcv34dmUwG99xzz463FDc1NcFsNiORSNDp74y7lBskvJXaDo/HQ6fDE4xGIwwGAxbm5nDtq1+F2uVCursbPe96Fyw2Gz1fONbWyr6ercZ0WL14PR5MPPkkHKurWHU4jnT6TKPTsQLlGpHJZDAYDEin04jH4wXmuhqNBqdPn64oSNRqNYLBIMbHx2l6y2KxwGAwIJvNwul0IhwOQ61WQ6/X0+hoZ2cnHUR90Dg0gkehUBQUNCsUCtoKl0qlMDk5Sf03kskkFRrl5u4YDAa0tbWB53k6v4kYlVWCtEkT1Go1PdGmUiksLi7C4/FAJpMhm83S1z/snVxkaOpOpJASiQSuXr1aVwTN4/FAqVTSAbWSJGF8fJyaVt64cQMnTpzYcdFD5poxSiEmfvkR03prO1QqFVpaWgrEDiESCmHskUfw6vPn76ZN/vqvYbrT+iwIApabmiDNz5e83rrTif7tv8UCvB4Poo8+io+Q9NnyMkufHXHsdjt0Oh0UCgWUSiWUSiVkMhkymUxB1oCk6AFgZmYGGxsb1JldEATE4/GCdYmQzWYxOztbkL7SarUYGBgoSE2Vu1gtdrY/SByalFY1SLqC+PgQwaFUKnH79u2CinS5XI6BgYEdKWRNpVJYW1tDMBikk5hFUUQikQDHcYe+C6TRqS1RFLG0tIT5+fm67QZaWlpobU05wTs6OsrM47ZBIBDA1NQUZDIZ7HY72tra6no+mYEXi8VyjtMaDcbe/Ga8Ml+kDA1RkZKPTqfDmTNlI9oAgB99+tP4pT/4g7LpscG3vS3n+XNHhLydiBAAz6pU0O6ACDn3wQ/i9y9dYumzLXDYImN6vR79/f1lU1CNgFi63Lp1q2CmoslkwokTJ/ZdemorHImUVjU4jqOKlPhqKJVKRKNR+Hw+cBwHq9UKm80Gnufp5OXOzs6GGiYplUq0tbWVnPxXV1dx69atbRnW7QSNdjydn5/HyMhIw/aP53l0dHRAq9Xixo0bdT23mgFlKBTCjRs3MDo6eihOALtNJpPBjRs3aNg7k8lgZmYGdrt901EhBGI8mo/p+9/H337+8zCsriLsdML0speVPR6NRmPF7SaTScSvXQMHIAzgReROghkA8qUlKBQKpFKp3KL59NP47FNPwebxYN3pxMAHP7gji6nd49nV9Nlh4TBFxuRyOXp6etDc3LwjHliSJOHGjRsIhUJlI+KJRAKzs7Po7u4+1Bd6h/edVSEej8PlcmFlZYUOUCQOzWtra+B5HoODgwXDSXcSu92OZDKJxcXFhnaYbYedcDxdW1tDMpmkzsfEzdd2p3Ziq1gsFpjN5oYOYwwGg3C5XOjq6mrYNo8KPp+P1hIkEgnMz89DJpPVHeUhpFIp3L59G9FoFO2vfz2N3oyNjZWdlVcslAiiKOLq1atY0esRAvB/AfQB+BYAJ4DJ//N/kHnVq3DizBkkk0lYnU5Y70RYGp3GymfV4YC0vAw3gL8DYAAQBOAymXb0dQ86k089RbvogJxIfHsigc8+9RT93g4CTqcTvb29O5YmymazuH37Nnw+X8XHJBIJLC8vH/rz3ZERPNlsltbSuN1u8DyPU6dOFQwhBXLiYyfSWdXgOA4dHR2wWCy4ePEiBEGg7rd75Xi7dPYs3n1H7AC5k8mbb9/GV86e3VZBYf6A17W1NaytrWF6ehrNzc3o6urakvBJpVJ1uRrXSiaTQSqV2pd+EvsZq9UKrVZLvxOO4zA0NLTlz3FjY4OerGUyGQKBAHQ6HVpbW+H3+2kkiYz1aGpqQjgYxItf/jLkMzPI9Pbiwfe+F4o7v6veN70JX/ne9/Ar6+t4AcBHkTu+JVHEM+97Hxa+/nW0d3fvWrR18LHH8KW3vQ3WTAbvIfsC4C+mp+H1eA5ctGK3OOiRMVIzUy0i2QjW19c39QJTq9UwGAyHOroDHHLBQ/KVLpcLgUAAVqsVBoMBJpMJFotl3325Wq0WLS0tcLvdBdX2e8FuOp4SZ92VlRWoVCrYbDbYbLaC+ViVUks+nw+Tk5M7Uv+0tLSE5eVltLe3o7Ozk6W3aoTnebS3t2NtbQ0+nw+SJGFsbIwam9Ur4kkRpUwmwz333INYLIZz585BqVSitbUV0WgUnZ2dtO4hHAziX//jfyyo9/n+976Hn/+Hf8jV8ikUsJ48ib/50Y/wEaBA1L8TwMc+/GE4n3uOtqjLZLIdbSywOp0YGxrC7968WbAv70gmdyxaQTpFJUlCNps9kK70JDK2G4XljYTneXR1ddHGmJ2mXBS0mMHBwZKL/8PI/lrxG0Q2m4Xb7Ybf74dcLkdzczOGh4f3zXygavT396OzsxM3b95EKBTas/3YK8fTRCIBl8sFl8tVcPuZM2cKplwvLi5iY2OjxC200ZDp3C6Xi7ZndnZ2MlfkPCRJwsbGBhYWFhCNRtHa2oquri4kk0lwHAe/3w9RFLG+vk6HwNYjHolzaywWQyQSgdlsxn333Qef14tbX/865DMz8NyJ4uiNRvzfP/5jKnaA3DH8yvPn8fTjj6PnTW+CXC5HsrMTDqCsqG+9Y2RJLjpIx9hOnj9a/f6y+9Lkdjdk+zzP03EspIkjP4K1WSq92vvfq+nmg489hmfLFJYPfPCDO/7aW0Umk6Gnpwd6vX7XxixsFlmtta7uMHAoBQ/P82hpadlyzcBe4PP5EIvFoNPpYDKZ0N7ejsnJyT0rYt5vjqf5CyRxSt5psZOPJEmIxWKIxWJIJBI4derUgRDQO008Hsfk5CS9uFAoFIhGo9TSAcilMa9cuQIAmJ2dxU/+4R8w8fjj6AiHsajX49eefx73vuQlFV+D4zgIggC/349r167l2tYlCbfe+lb8+tgYPT6/861voekLX0CgyDAQyIkH9dIS5HI5OI5D9xvegB89+yykdLpE1C+bTBjOuy2dTkOlUtFuyp2gUrQiEAggFonULCDkcnnBGBZJkiCKItLpdNVOxvzGDp7nkUwmqf8Yub/c+9/L6eaNKCzfbbGWzWYxNTUFIDcz0Ol00plxxA6F4zjE43FEo9GGDNw0mUwVmzQeeOCBI2WPcSTa0g8CpDNoeHiYFkun02m8+OKLe5be2k+Op729vWhvb6f/F0UR586d27MCb5lMhr6+PlrsflSJx+O4cOFCQUqkubkZg4ODCIVC8Hg84DiO+n18/5vfRNOf/RnuB5AF8ACAbwM4ee4c7n3JS7A0P49vv+MdMCwswNvcjIHHHoO9ubkkpVTNeVmSJPzW1762qSvz3MQE8J734J24WzfzDMdB/pWvoL23t+D1SIQknU7vSPrH6/HA/7a34V2ZzN00HICfB/BXdUwKFwRh28KMvFdinUEgpoz573+7080nb9zA1Ec+gu5YDHMaDfo/8xkMnDix5X2vByLWii/q8q0OSEq9mM0E5FZpampCX18fZmdnkc1mcfLkyW1vM5VK4dy5cwW38TwPi8WCY8eObXv7+40j35Z+EDAYDDh16hS8Xi81XlMoFOju7obb7d6RotzN2E+OpwsLC3A4HDQ8y/M8zGbzpsV4O0U2m8XGxsaRFzzEhIzUUJHoKpAr+na73XSBvH7+PLr+7M/wn4GCRf31AD73qlfBefUq/mlkBO+Lx3P3Lyzg2be8BekybcbVaszMv/M7NUUnh0ZHMf2//hc+9vGPozUQwLLJhMFPfKJE7ACgTuk7hdXphPdlL8OP/+VfIENODL4cgB61180VmzVuFdIwUQwp4M+/r9r38Nn3vx9D165hEMAEgNsnT+L3v/hF+rjJGzegeN/78Pk7z5EiETzzvvdh8k/+ZFdEz2aNGST9V65+S5KkHYn6kVlWpO4mm81uu3ZQqVRCp9PRiHhnZye6urqOZISaCZ59hFarhVKpRDabpVcVbW1tcDgc+OlPf7rHe7e3ZDIZ3Lx5E0NDQ9BoNMhkMg1tQ68XQRDKuvgeNVZWVsDzPLRaLWw2G+x2OzQaDbLZLJaWlgoeu/jxj+NJFBYJvxLAjwG0RSL420cfxe/cETvk/kptxtVqzFp1OuDJJ/GVTaKToiiie3AQvd/6FgBgVJLKppCJyFYqlchkMpAkqUDkNQqutxe/9C//sqW6OY7jqCjbyYUslUoVRJEqfQ/fv3IFb/J4CqNn167hs+9/PxU9Mx/9KJ5AadH44x/9KAa++93ctiQJ2UwG89/6FtQuFyItLQ1LO23WmCFJEjWrLYbjOCSTSQiC0NDjgOf5HampsVgsiEQiUCgUcDgcR1LsAEzw7DvKeTHI5XIYjcaClu6jSCgUwsWLF9HS0oJAILDr6Sy9Xg+j0QidTge/3w+PxwO73X5kTx4A0NHRgY6OjpLbScpvdnYWGxsbkCQJPalU2QWGB7Co0aBvaqrmNuNyNWZ/NTJCozi1RCd5ni97hU46s0hRaXFqhzym3Fia7eDS6/E/APwO7oqEbwwPo+eNbyxJJ5FaJOIcL90Ra7sxqiaZTNIxMb1velPZaJr59m0qdoC7Yub6tWt0O53RaNnvuzPPATibyWDtfe/Db+Zt/5svvgh87nPbFj2bNWbwPL9pDWU6nabjghpBT08PHA4HVldX4ff74ff7G1LH09LSglQqhZ6engM7FqIRMMFzAFhcXKRDOFOpFCKRyKGev1UNMk6iUZArY5lMVlDgmY9CoUBvby8cDgcA4Nq1a4jH4zh9+vSRFjvV8Pv9mJ6eRjqdhsVigV6vx/eUSkhFokcC8DMAA5/9LFa++lVILlfJ/as2G8Svfx16txv/sLgI89gYTZP8n9FR/Ie2NoSbm9H28MMwms2QJAk8z28qRirVYJAupmqQ358gCEin0+A4bkuLHokW/cvzz6P3S1/C65GLePHIfS7h//Af0JIXTSJRJrJ/pL2cvP5uNTkQ81C5QgHzU0/hK3/7t9CurCDe1oa2hx/GyKteVSJm3ABUAMZf8QpMANhAzvhRgZzT9YMAdAAWNBoQP/aFv/kb/EZR2umN4+P42ve+h75HHqHdY8RCQBRFZDKZmn6XbQ8/XDH1WatwJFGgRgkenU4HjuNgMpng9/vhcrlgsVi2fZ4RBAGDg4MN2ceDDBM8BwCHwwGv14uVlRXEYjGaNlhaWtoXrswHFZVKhdHRUdpiHolEsLGxQdvPyWJCTqYAsLy8jEAgAI1Gg+npaQwPD9MFlnEX4pmTX/D5ym9/G8/86q8WpDn+FMDGe96DB4aHYXjsMTz7zncWtBn/hSDAHArht772NZwF8AqgME1y/Tr+7cQJvOFONCd/wVcoFGVn1DWy/iJ/Ucz3iyJDHjeD7If3iSeoJ9BDd+57BYDf+9KXgLzaI/Je9nqGVP7nptZqC6JpkiRhAiiInqwA+CcAn7lzWwi5YvV/j7vf5fMAFgEMPfkkVCoVJEmCukgA487jVS4X/d0V+wgRf6Fy50YiMHmeB/R6KL/0JXzt29/OpT6bm9H22tfCYDLVFblbXljA5FNPwe7xYNVux+CHPrTl74JEzogYDwaD8Hq9LH3eIJjgOQCoVCo6/mJ1dRVTU1NQq9Xo6elBOp2G2+3ekY6BRkBy3fsJo9GI9vZ2aDQaeL1eenIjn7Hf78f6+nqJMVg4HMbs7CwA0Bb1cDiMZDKJ5uZm9PfvZ7uz3YWYAJKiT6VSiXte+lJMPPUUHvvIR9CTSuG2XA5lZyeGvvc9/PTCBQw+9hi0eW3G3uZmKPv78Xvf+AY45EZBfAFl0iTPPQfpN3+zoMYGyB17JPoil8tpBI/U3zQ6OpcfeZmbmMD4Bz9Ytfvo+9/8JpJ/9mcYBGAGEEGuSJnAASgtn65vhpRrZga3PvYxdAQCWDSZMPzJT5Ytym4kHMfh9smTeObaNSpOvwvgt3H3u7sAlKS8XgXgs696FUYGB2kEabO0kyiKJd8j+c5J7RW5n0wZzxdCCqUSA299K0RRpMdNPecr8l38ftF3IT39NGx1ih6NRkMFTygUglqtRnt7O21PZ9Hk7cMEzwFCJpOhpaUFNpsNKysr2NjYwPDwMFKpFG373W/kX1GRLpJsNluwGO3m0FSbzQaHw4Hl5eWComelUklncpHUVT75AzHzicfjAO52VzRy2OxBJxwO4/Lly3QhEQQBI6dPY+SHP4TX44H20Ufx9pmZgoVC+/TTdEJ4P4CL/8//Qxe7PpQ3CuwHSo4hktIiKQeyWJBjsXihJMcpSW1up/28WvdRIhbD/Mc+Bn06jSEAj6IwwvHvcFf0SADmAYjnz2P0gQfubr/GGVKumRlk3v1ufFqScq8Rj+OZd78brjJt943m97/4RTzxX/8rrl+9in4AKRR+dzKU/y47iy7ctuoHJklSTVGa/CjRVqj0XTzxhS/A9uST9DXIsVUt8pff8ZnJZNDW1kY7HhmNgcXhDyAKhQJ2ux0bGxu4cOHCjs9i2Q4cx9GZVMlkEqlUil5pcRxXIHwEQdjRcR+tra1QqVS4efNmSYeX1WqF2Wyu+FxiDEameNvtdhgMBnAcB4vFglQqhaWlpQNp0b9TaLVaDA8Po6WlJedunHflPPnUUzR1BdxdKCbzFuwfnT2LzPg4yCc6BaD405Xu3F5w1X4nlSUIAhQKBZ2jl06nkUwmIYoidR2Wy+VQKpUFTsPEdG8rx6IgCJj56EfLFuze+tCHoH/8cXwhnUYz7ood8phXITe9nbyvZwC8GbnutnxqnSE18fGP4513xA7dD0nCRNH2dgJJkvD4H/8xXvOTn2DkJz/BHAq/uwzKf5fFHWkanQ6mJ5/El3791/HHTU14Qq/HmEyGG1//OlY+/3lMfP3riG3TgJREgwRBgEwmgyAINUdTqn0XgiDQY5AInUolCGTUBEGhULAZfjsAi/AcUNRqNZ0QPjMzs9e7s2WIQMj3uyCLUSM7YCwWC5LJJAKBAK21yF+AyZgKhUJB3WWBXHEmGUxZLIgikQjC4TDsdjvOnTtHCw4ZOXiep8N4Ozo6cPPmTeoFUsuiHf3Sl/Ah5Lx6XomcL80zKKrhAZB6y1sA3L1aJ1HEclfSSqWyoHanOBVMOpDIsZE/VqKSmOU4Dk1NTTAYDEgkEuiMxcq+t55Egu67HuUjHJcATANYQs6f6F4A54t+B7XMkLp+/jxiKyv4c+TqYn7tzrY43B2dUSu1uhHnp5CKi/+F97wHz/zZn9H3/wBKv8u/6O7G5Pe+B/F//++C9FssEoH5u9+9W9s1NobnxsbwCwCasT1n5/waL0mSaMcVMZncjErfxZrDgb688wtJp5Y7P3R0dJRMKU+lUrh9+zaUSuW+vqA9aDDBc4Ah7dH7rUZmu5CrINIB04j6pI2NDVrjAaCkyDiZTMLtdtOws81mg1arxdWrVzEyMkJrUvLR6XR0vtfLXvYyJnaqoFKpcPLkSVy9ehXRaHTTRVsmk6EfgAE5ofNjACYA/wzgvwIYQC6yk3rLW/C2976XLrAkukPGIwB3Iz5kcdvseyJmbyS9NTw8DJPJhPn5eTrPK5vNwmg0YmBggNZd+P1+zM3NYU6thhSJlLy3RdwVOSGgbG1KFsB/LrptVqmkXUvA5jOkrp8/n4skoVAYAsA9KB2dUY1aR0eQCF6lz/aVb3wjvg/g9/7sz9CP3Hd3HMCPACwYDFj7+Z+H6fnnqU9TfvrN9ad/WpI2eguAPwfwHhSaBebzo7NnEf7Sl2hHn/53fxcPlUmFkSJ2cq6p53xT6zwvYitQjEajoSNY8iGeVoft3L7XsNESB5ilpSVMT0/v9W7sKI2K9hR7puS3oZP6IlEUIZPJoNPpaPpDrVaju7ubjvtgbI+ZmRm4XC5a7PnaRALnkavp+JlMhpY//3P4vV7Mf+xj6E2nMQ/g1ciNWAByC8rvAXjNT34CQRDQ0dGBcDhMU5T5CwTP8wURn1rHLpB0WDabRW9vL5x3ik/JINnl5WWkUimYTCZ0dHTQ+ozbt28jFArRGp53Ii96AeAccos0h7tdS29BoShZAWi3FrnNdfo0HCdPFkRW1j0eTH/hC7CtrmLd4UD/Bz5AC5b//j/+RzxZpv3/DwD0VRidUYlaRkeQOrxaf6PxaBRLZ89Cs7xMTSHP/fZv45NFRoASgI+1tKCL4/CuMjWKzyH3+QHAc//pP6H1Qx+i9/3o7Fn0fulLJdHAmTzRQ8ZG1FrvUwmvx4PJCvO8SGSw3HBWs9mMY8eOlU2dxmIxNqB4i7DREoeUvRosupuQk0QttvkkF5/fpQOA1nDkk81m4XQ60d/fj0QigcXFRaytrVHRY7PZYDaboVarWeSmgZDvwep0Iv7lL+Ov3vc+vPtOCugV2Sz+28c+hm63u2x04ufu/Fv7u78LIJembG1tRTAYRGdnJ8bHxwGAdmqRFnFSlErSVaSYuRJk6GZHRwcVO0DueGptbYXP50M2m4VWq6V/e71exO4Y5g2cOIEf/e7v4vEvfQldADzIRXTaAfwPAK13blMA+CAAJ4BlALePH8dH/+iP8KFXvxrdiQRmkavhefTSJUiXLtHIitFshs3ppEWxfchFQ0mdSCWDx2agLrEDVHcjJq7wpEavVtRaLfoeeYRG0TiOQ1sgUPZ1WgMBrA4NlY0GLgH4FHKf38S//RvE17+evrdontgh23oncm3+T/zLv2Dw6tWKIy9qoVL3G0kpkohiNpsFz/MlYod0dZazs0gkErh48SKGhoZgt9vr2i9GdZjgOcCQ1s2jwGY5dZKu2iwELAgCrFYrHA4HDAYDJEnCz372M3Ach87OTrS2th5pJ9KdJv+Yjb/wAhU7QG5RSrjd5RcqAN8BYPjAB/DQr/wKgNwk8UQiQWscBgYGcPnyZRptIKmJ/JqsZDIJnudp6jIfYuBHzBLzh9US5HI5jh07RgueCa2trWhubobP58PMzAzSX/sangDwdQDdAN6BXNv5d5E76ZIWbQl3W7a/ffMm/vprX8MHbt3CP37qU3gyL7LC4W7qRlPGQZoUWqtUKkwrFGWnwM8rlfiVO4KguC4nOTAA16c+VdJGT9rCI8gVVMsBpAFMZrPoubOgF18QvP4Vr8BbASoo/hLAt3/yk4LHkIgq+Y4WjUZIRbVPZHL9qTJpo68hl+58D/kcw+GCDrR+lK+R6gUwevVq1ZEXm1FL9xup+yp3odbT04P29vaKF1LBYBCiKGJ8fBwejwdOpxPRaBQdHR3bnqt11GGC54AiSdKRGjVRfHIgCw45mWx2hSmTyTA6Oko7q/K3e+zYMWi1WhZC3iLRaJTWt6jVapoiVKlUdBYRERLkmI1FIgj967/in3HXZVcPoAsVWs85Dr8jiggGg7hy5QpikQgmvv51zLjdUJ08iYcefxx6oxGnTp3C0tISwuEwEokEjSCQiA9ZZMnCQf7OT2uoVKqq9gKVumd4nqfdfpfuLN4TAF6HXCRHi1xq7iEUCrpXI1ej9E4A1//qr9D1jW/AsrFRMbJSCeJ51ffEE3jmAx8oSee0f+ITAErrcogJIGmjvxSJ4H+/731I8zxmZDJ8mOPwcknCq/K25/rHf8Slhx7C8fvuK9iH17/iFXgKhcXIp+7cXix68hn+5CfxzLvfTbvKyOT6wU98IpceyvNnWrXZ4J2cxB8XieV3ShI+9vGPo/2550qMD3Hn/zMA/gilgjp/5MVmTHz84/hkme438tr55KfSlUplgWN7MZlMBhsbG1hdXaW3+Xw++Hw+yOVy2O12aLXamveTUQoTPAeUaDR6ZCI8xfUBPM9DoVDUVdDX2dlZsduBuZhuHUmS6LwsIHdcVnusQqFAIh5H6MMfxgfuzM4iU9NfDtD25eKFak4Q4Ha74XQ6oVGpsPKf//PdQtof/ADf+9GP8Iof/QhGoxFGoxGRSARutxs+nw+JRAIajQaJRIIOeyTRnXKdXN3d3dtaWGQyGZYMBkh+P6IArgB4CrmCa6C8oCO+NCQlorv3Xkhnz5Y13MuPGpBoZH4xdtfAAC61tOAPVlbQhlzqR9XSggdPnQJQOiU83wTwMoDrd/aXE0VIoojPA1TskP39DQCP/cEf4PgPf1jwXt6OUkPBd97ZZjXae3vh+spX8LGPfxxtgQCWTCYc/9zn0NnbC0mS4GxrQ8uf/AkAYFgUcfM//IeKKTBJkmB8//vxzBe/WCL6MqggqDfZv3za/P6Krw2AtqKTwc9ra2vgOA5Wq7WqI/vs7CxWVlbo89PpNDQaDU6cOAGVSsVS6w2A+fAcULRabUGo/jBDiv7ImAdRFOvuXgiHwwiHwzu0h0cXjuOg1+uph1K1dCDxZJr95jfxxvHxgkXxlcilTKx9fXgGdz1ayEI1+qUvIRKJgOM4BH/8Y2pER57/qxcv4h8+9Smsr68DyHXQ9ff345577oHZbEY8HqeFyMXpKODuTCpBEBAKhcruvyiKCAQCcLlcWFhYwMLCQsVj6teef57WHv3mnX3MIJcOKus/c+fvVQCf6u2F7aGH8P0HHqCPnQDwuEKB7HPP4YePPIKV+Xkq3sjQUMLS2bP4g5UVfBq5jq9PA/iDlRUsfuc7kCSppC4n3wTw2ygVLPehvEjoKRNVrZRKqkVQtPf24qHnnsPQ88/joeeeg7OtjXp3kToh8m+X2Vz2c1w2mcBxHH7xNa/BzO/+Ln4Pubqp30OuYJlHZS+nWlk0maq+tt1ux8jICJxOJziOg8PhgN1u33T8DLmo6+/vx0te8hIMDQ1hdHSU1RE2EBbhOaCQzojNFv5aPTT2M6QItZ4fPc/z0Ol0EAQBZrOZmoAxGo9Wq6XHYX4KqRhyLMp++MOyi+Lqvffid/7pn3D1wgV8+NWvRlcyiXlBwK9+97u496UvpdEY+R135uLnp8bGMDk5iVQqBYfDQUWy2WyGz+dDJpOhreuk+6/4uEomk1hdXQXP87BYLFRsRyIRzM/Pl/ze5ubmoNfr4XA40NTUBLVajWQyiWP33ovIP/4jYnmRiAcB/ANyjsr56aHvAkgC+BZyqS/d7Cz+4ud+DqP/9m94/gc/gO/GDWTPnsUT6TS4dBrSygqe+Y3fwPRXvgIAtHjWZTbjxOc+B32FQmOVywVBELBuNBZE0YgJIIdcYXXxc7MoH3UrbpcHUDGVNAWUPHY7DH3iExVTYISHHn6YziEjr/3Zf/7ngpEXRFCPnzyJ19T42tXSbzzPo6enZ0sCpbu7m4obnucLCuYZjYEJngOKKIq0K6QStXpoVHv+fhFL9ZxAlEoldVU2GAxQq9U7uGeM/KhOsaMyIf9Y/BHKL4rO170OeqMRP//v/z1+/s7IDiAnQi5cuACVSoUzZ84g09tb9vmx1lak02lMT0/D7XbDZrOhvb2dXjkTU7n8YuWRkRFotVrE43GMj4+jq6sLJpMJ2WwW169fr8mTpWL0UKHAZN571QP4ZQBfBfA/kavpMQH4ReSmhD+Pu2Ml3iGK+Mzb3ob3nD+PP7nnHvx3FEZd3ilJeO+HPoQzfn9h8ezb347l17624vyplcVFCN/5ToHoyjcBXETpd/MAckNe/zMKRUJHnrgg/CVyNTvvLHrss0DNgqIW8lNgrYEAlk0mDH7iE5t2oP3+F7+Iz77//bh+7Rr1A/qZyYTfaWnBxNe/XnCO43ke7e3tsFqtuHHjxt2Zez09WH32WXzswx8ueO2ugQEMDAxsORqzsrKC5eVl+Hw+NDU1sajODsAEzwGF4zg0NzdXnaFVnKvP7/QoNukqZrtiaS9Rq9VlzbwYOwOp3wFKnYsJ+cfig7jrnkxreB54AC9/73vLPlcQBOrEzXEcHnzve/H9730Przx/vuD5v/qHf4iZuTk0NTVhaGgIfr8fmUwGHR0diEQiCAaDNPI0MDCAVCoFlUpFo3+Dg4O4desW5ufnG/bZcI8+iv/19NN41533qkNuUOg7yjw2v2qIA2BfX4cgCGipVMDs85XWy0gSPnruHL45MkLThvnzp67+9/+O30+lEEGuUFqGXITnak8PPrK4CG0mU+KA/G0ASgAfQK4FflapRMcnPlEw34vw7Z/8BK9/xStwHaCC4lmUdmltlQv//M9wf/KT6BdFTPE8mj/2MQz/wi/UbKQIgHZjxSIRmB57DH90+za4H/yg4BznbGnByMgIVCoVlpaW6LFiMBhoO73zToHyCMehv78fVqt1W+MgiMAh9ZnsQq3xMMFzQOE4Dk6ns6rgqeahsRnbEUt7Aem2cTqdZduJGTtDPB6Hy+UCcLdGpxz5x6Ied92TV/v74XjHO/Dy974X+ioW+vmjPfRGI17+wx/ix1/+MmSzs8j29NDnczIZbt26RVNMhL6+Ply+fJn+3+Vy4d577y24io5GoxX3f6s8/Pa340uTkxj76U/RBiBx508ll+X8/6/ZbNDpdFixWMq2bHegNP3EAWgPhWD4ylfw1e9+F9qVFYSdTrQ9/DA0Oh0d6aFHrluMsJBKgfuN38Bv/M//iSvImRSSgudYczOGX/lKPHRnG5ulpvLFzQgaF9m58M//DNsf/iEeu/M+JVHEM3/4h7gA4P5f+IW6t1fpHPftf/1XjH7mM7QLNJ1OY2BgAM3NzfR4sdvtuHans0uhUMBsNm979hWx3SCCitF4mOA5wOh0OrS1tWFpaangdmKKZV9fxz8CeAkKJzAXD+gru+1tiKW9wGw2w+v1Qq/XU6t/xs4jl8uh0+kQiUSqmvkRP5d80fNLAH78jnfgoY9+dNPXOXHiRMH/9UZjyfMymQzC4TBGRkZKnLG1Wi1GRkZw48YNALk5aEtLS2hra6OL2E6lEH73U5/C//2Hf8DS5z6HDgAnkKvbeTXuRlGeBfDaO4+XAPwFz+MNZ88CAB55/nk8c/JkSc3IosUCyest610zrNOh75FHAABdggBRFJFKpaqO9Dj5q7+Kb/zrv+LNt2/jXtyNDJn2SVTX88lPUrED3O0A+8AnPwlXe3tZI8BqVDrHWTY2aFE7x3Ho7u4ueIwkSQUXmtlsFteuXas4gqYWYrEYVldXqU0GGxy6MzDBc4DhOA69vb3IZrNwu90AyphiIVcb8O+QC6eT0PZmFC9QQO1iaS9QKBTo7++v6HHB2BkUCgWGhoZw8eJFarRWLq3V/trX4hvnztHuqs3SWLUQi8Vw9epV8DxPW3gHBgbofLNiLBYLNBoNYrEYnauV78ljtVrhdrs3rY3bCj//y7+M2M/9HG79l/8C7/w8+gF8CDlTwhkALwPw/ykUMAkCfA4H3nD2LAaOHwcA9I2M4AJp2Q4GsWQ0YvhTn8K9CgWeefvbqxbuAqCpQIVCUXH20+Bjj0Gt1QJPPomvnD0L7coKEm1taH71q/eF2AGAPlEsK1C6RbGsEeDfmM04Ho9XFECVznFrJhOAXNeU2+2mx01+l5XFYoHBYMDq6iqdrXbr1i2cPn267KiIani9XkxMTADIpePZGJudg83SOgQkEglcuHABoijiR295S9mZNH+oVqPlkUdoaHszSA1P/gK1n672itFqtRgdHWWdWHtAOBzG3NwcVCoVJEmCx+MpG+1RCwJC//RPkN9JQz1wJw0lSRL8Gxt44f/9fyGfm4PY24uht74VInLhfYPBgFAoBK/XC5vNBr1eTxeFdDoNr9cLr9cLmUyGkZHqCZeVlRVMTk6io6MD3d3dJVGdUChUkPqqBulGI51eZD5bNpul87XI49LpNDiOQyIex/c/9zmc+PGPSwp7w088gVMveQm6urpgs9nouIhYLIaJiQkkEomSz9U1M4OJPCFUrnA3f+yETCaDb30d45/9LGweD9YcDgx88IOwNTfTVEoqlSow9qw2FLSRPP6Od+CBxUXq0Hy+owNP/MVf0Pv/7pd+CX9UJHrIbLV8M0FyOxkuSoRg8ViNaue45tZWmuIkHVMDAwMF+ytJEtxuNyYnJ+ltPT096Ojo2PS9er1epNNpBAKBAqNBo9GIe+65Z9PnMypTbZYWEzyHhIWFBczNzeH2K1+J9+R1uBD+VKPB8PPPF9zm9Xgw8eSTcKyuYtXhwOBjj9GhdwDwrf/1vyB/7jl6Asq85S14w7vetcPvZOscO3aMmQjuA+bm5uByuWghJxEEcrm8oDBzeXkZfr8f/o0N+D7wgYrimnRXEe65556yJpJkEOxmBINBpFKpiscKmZq9srKCYDCIvr4+KBQKLC8vw+v1QqFQwG63w+l0YmNjA5OTk7T2p3iOmyAIJV1rP3j1q/FEOFyyQD+u1+M/ffe7m+5/OSRJosXd+SNYyOexWbcZETiZTKbkscWDd3eCx9/xDvz24mKJCPzzPNFDaniKH7PI8/hvZd5f/nBRMoj0oSIn5FgkgqU7ES0yyDT/gq6zsxNdXV1lBZ8kSTh//nyBAazT6cTQ0FDV95rNZnHhwoWy3Yz9/f1VXb4Zm8OGhx4BOjo6EI/H8Y8mE6R4vHxeP+82Mq36IyS0vbyMZx99FHj6aVidTpx99lmcee65wpPLc8/hrFKJh9/+9t17Y3Ww0ydlRm1YLBbE43FoNBpIkkQX03Q6DZfLhVAoVNAxtfid71QtkBdFscAvJxgMlhU8tYgdAPS5gUCA1koolUqaiiBt9sW1G+TqPX84qclkKoi61BIJ6YxGy6ZmOreRSiMpOpVKhWw2S/ePRJZqoVIkJ5PJ0MhpvYaftfKSPLED5Dk0Ly7Sx9z/C7+AC8jV7PSJIqZ5Hs6PfQzJ//k/IbndJee8fKMADnedkPPR6HRlmzDUajWGh4er1uRwHAebzUaL9gGUNbQMBoOIxWKIx+OQy+WIx+MVP0c2x29nYYLnkMBxHAYHBzH6+c/XlNeffOop/P4dsQPkTghvTyTw2aeegvWpp8A9/XT5IY5PPw3sM8FDTjzNzc17vStHHkmSMD09jVAohLW1NXo7abGNl4k+blYgXzw4tlGLgk6nQywWw8bGBgRBgN1ur1p/kUgkMDY2Bo1Gg8HBQQC5q/Vy4ykI5e6b02ggRSIlC/SCRrMtcz4S3SGvWY9ZJ5l5Rsif9k3cqUkUKZFINDzFVatD8/2/8AvAnY4s8lm52ttLjACfQ64onFDuoq8a7e3tNRUgk+iO0WiE1WotMAvMZrOYmJgo+B0UI5PJqElqc3Mzm46+wzDBc4jgOA6vef3rcb2zE//tkUfQ4vNhqYIhF2lPLXg+AJvHA2B7FvG7idVqxdDQUN2FgozGI0kSFhcXy45miMfjFTtPqhXI8zxfsBA3UtjK5XIYDIaaO2tUKlVJK/v6Ha+c4it2Mu+tnDjo/8xn8Mz73leSmun99Ke383agVCrriugQ8ofwEsj8OrKt/NljZKRFI9mOQ3OxCeG8Vgv7+jrIUVLpoq8ak5OTiEQiJXU7xXR1daGrqwsajabkuJiamoIkSbDb7VAqlchms1Cr1ZidnYVer8exY8dYR+kuw1aJQ4ZarcYDP//zeMDlQjgcxtTUVNkFqFp7aj9qPwHtlRuzWq3GyZMn2QljHyBJErxeLxYXF6vOK6s0IqRcB1d+N2F+lGRjYwO3b9/G4ODgnjjR5r9mOp3G8vJygaiRyWTUbbpSimjgxAnM/emf4sOPPYaueBwLGg16P/1pDBS13m+FekewkChOseDJ30bxb7z3TW+CvMGpl/MdHXimTA3PCx0dNfn4tPf20knlw8gVc9frwlyM2+1GZ2dn1UaI4iGzyWQSbrcbi4uL6OzshNVqxaVLl2CxWADkanx4nkfznSJxxu7CipYPOdlsFi+++CKtpSAhalLDU9yeqs2r4TmZl9YiJ6Brjz5Ka3j2qpPLZrOht7eXiZ19wvT0dIkXVCXKRUOA6sWjpJg2H61WC71eTwd+WiyWTY+HQCCAQCAAQRBgNBqh0WhqfIflmZubg8fjodEOpVKJRCIBuVxeNc1FUCqVEEWxYWaH9RYXk5lNlfZVLpcjFAiU/Ma/OTICw+c+1/Df+OPveAdesrhIHZpfKOrS2gusViuOHTtWVx3UxYsXkU6nwfM8zpw5A5/Ph7a2th3eUwaBdWkdcaampgqMspRKJTiOg9vlwu3Pfx42jwfrTicGPvjBgi6ts88+C+7pp+kJSMoTOwAw+Zd/iXd/9aslUaCv/OZv7pgbM+ti2F+kUimcO3eu6mMkSaJihLRH10t+ikWpVJbtJrJYLDh+/HjZxWlubg4LCwsF23M6nTAajTAYDHUbvUmShKtXryIWi9H6IkmS6GBSURSRTqermjGS55BU1HYhHkj11O1UE1sKhQJjTz+967/xzdjtqHKtreaERCKBF198saaOLUbjYV1aR5z29na43W6IooihoSHaYmu22fDyL36xbGg1kUjgNW97G1TvfjeSyWTZPPpuuzE7HA4mdvYZxPCyGpUGitYDmXIuk8kqbmtjYwNzc3OwWq3Q6/UFC39xWpd0jLlcLuh0OtoybzQa0dTUBL1eD1EUsbS0hHA4DKVSiba2NtrNtbq6ilgsRsWbQqFAJpOhf4CcAFGpVEgmkxWFD4myNAIiLElbfTkUCgU1atxMeKbT6Yb/xt/yilfg1wBqdfE3AJ6rY87WXsz4m5+fr0vwZLNZaDQaNuJmH8IEzxFApVKhvb0dCwsLiMfjcDqdUKlU8Pl8BSfofMhikUwmqSAqPkE2yo05vzC1uEg1H71eX/Z2xt5RLYJBFtdGdfVUOzYIi4uLWFxchEKhgMViQVtbG3ieL9sdRkilUohEIgAAv9+P+fl5WmSaf8y73W5IkgS5XE5TQWR/SEt4vhiTJAmJRKKgLb8cpIamEZ8RMQ0sh1wuLyhErgbpxqr0G4/fEX/1mBK+5RWvwKdQOJj01J3baxU9ezHjr7fO2h+tVov77ruPTTvfhzDBc0To6OiAx+PBxsYGOjo6oNVqYbFYCiZdVyKbzdIFAAB1lW17+OGqxaYEnuehVqsRj8dLFqwzZ85Ap9Mhm83SE8Ty8jJWVlbgdDrh9XppIWwwGGS58H1GuVRQfuEu0LgZVcWmetVIp9PweDzweDzUEbkS5QR/uVoYInJI8bVaraZiThCEivsmiiKy2WyJIAJAU2BtbW0wm82IRqOYnp7eVNiVg6THKtXxyGSymuqFFAoFFTKVCspbXv1qZDIZKBQKen7wb2xUTTX9OlDea6eO97gXM/68Xi/sdntddghM7OxPmOA5IshkMpw6dQqTk5O4fv06Tpw4gcHBQbzwwgub1hkAuUgPMTXjeR6pVAoGkwmyL3wBX/nOd8oWm3Ich56eHrS0tEAmk9GTeDgchsvlKlgs89Nq7e3tNBzc0tKCK1euIBaLwev1IpVKscF6+wSfz4fp6WkAhSJnM2+arUKiF7Ucr/ls9ngS+ahlO0ajEcFgEBzHQa1W09ESm6XsOI5DMpmk0aH8bcZiMbS2tkKhUMBoNCKZTBbUG9VKcacYed/k+6glrVg8C02j0xXM18r/jRNhBAD+jQ0EP/Qh/NatWxVTTdWsLkhtFol0VdrXvZjx5/f76z7mGPsTJniOEGq1GidOnMCVK1cwPj6O48ePo6+vD1NTU5s+t9xJKJvNQm80ov8tbym5orFarejo6CjwOCEneqPRWNYptxwKhQIdHR24ffs2JEnC3NwcNX1j7A2SJGFqagoreVfVWy1GrofNIjXb2W4tiKJIC/51Oh1SqVTdtUnlIiwqlQpra2u0Pq2jowNra2tV03CVSKVSNNq0lSgRKQ7Pp5IbMSnSTqfTuVTTHbEDlE81VbO6OIZCF+dKhembWRhslWpjdrRaLbvIOiQwwXPE2NjYQDweRzgcxvr6OlpbW6FWqzE3N1fVQ6US6XS6JFTf19fX0NRT/gmYjCRgIePdJ5FIUEO2/O9kt76LWmp4dhqfz4fe3l6o1WrwPI+bN29uW+glk0ksLS3RtAkZgjo/Pw+fz1e3yEsmkxXb/4shhc4kUlVPW3sqlaLuy4YKRqZ6jweCIIDneXwbuZqdd6LQ6uKvAbym6D2mUima7svfp2oRp61SbczO8VOnNjUfZBwcmOA5YqjVauh0OgQCAUxOTkKj0aCpqQkcx+HGjRtbWlCKvUca3UnlcDiwsLCAbDaLWCxGZymRq1hBEJgA2mEkScLt27cRuDOPiHQ1EX+nammIRrEfBE82m0U8HqeCfnBwEOPj49vebjwex6VLl3Dy5Emo1Wro9XqcOHECkUgEY2NjNNqjVqthNpsRDAYRjUYrbi+dTm/adg6gbF1RPZAZXkGHo2z0Jux0UgH2rXPn8GsvfSmuA9Tq4q9R2qVVPLeLRJEIlSJOW6XSmJ0nvvAFPPzCCw3romPsPUzwHDF0Oh1OnjxJXZivXLmCl7zkJTCbzTh9+jSuXr1atycIKWKWJAmiKEIUxYa6iAqCgO7ublovkkgkYDAYsLq6CqPRiI2NDdauvoNkMhlMT09TsVNpKCWZC9QIT5ly7BdR63a70dHRQedvbWxsYHV1ddvbTSQSuHr1Kl7ykpfQKKZOp8P999+PcDiMVCoFi8WCRCIBm82Ga9euld2OQqEAx3E1fQ/ke9xuqrBcqumvRkbQ88Y3QhAE2pTwl//0TwBy3+UIUOKiTDq/KvGFxx9Hz/nztK199oEH8IEnntjWvlcas9Pi87GRNYcM9m0eQTiOg8FgwL333ouf/vSnWF1dRVtbGzQaDfXxqBcSdlYoFIjFYg1vIW9tbUU4HMbq6io0Gg14nqeFzdt1zGVUZ2FhAZ47M9YAlBTekqt80sGkUqlouuMwIooiZmZmMDKSc6fq6elBMBikgyS3QzabRTgcxsTEBM6cyXmnkd8rkOsYCoVC6O7uRkdHBxKJBCKRCGJ3Jq2Ti45yabZyETISId1udK5Sqkl+p7CZRGmqzeEqJ5bzI8dfePxxvO78+cKU2Pnz+MLjj5eInnrMCSuN2Yn39Gzps2DsX5jgOcJwHAeFQoG5uTk64O7ee+/F8vIyjabUiyAI0O2AARjHcejv76emckBOZK2urjKDrx0mGAzSf5NOmkqimERhyFV9I6M9xHxwpyJI9bC2tgan04mmpiYIgoC2trYt/2byyWQyFZsIVlZWMDk5CYfDQTsgCSTdG4vFaMcTibLKZDIolUrwPI9bt25hfX29YLukBX27ArVaqon4F5HaHDKNPb/YPb/rC7hrA0D2qy9P7AB5be3nzxe8Vr3mhIOPPYZni8bsPKfV4tVf/SpisRhmZ2frGi/B2L+w5OQR59SpUzCbzZibm6Ph7ba2NvT19W3pB24ymXbsxCCXy2Gz2ej2eZ6H3+/fkddi5Bap2dlZ6lJc66ymbDaLRCJBLQQaWQMhiiItZt1rxsfHaW2Nw+GA2WxuyHZDoRAkSUIwGITX64XP58P8/DwmJyfB8zxWV1dLRItMJoNer4fD4YDdbofJZIJer4der4dGo6FRuaGhIVp/JQgCBEFAyO/Hv33gA5h+61vx0w98AN68aF6jIENKgZxwJe7TmUymZCI7ofi4qdbWns/S2bM0tUYe8+bbt7F09mzZfbM6ndA+/TQ+e/o0vtrejv/xi7+IXxwfh6O1FdeuXSvYR8bBZu/PGow9RRAEHDt2DPPz8xgbG8PJkyep6NFoNLhx40ZdV371mHNtF7lcjv7+4tMdo1F4PB4sLi4CuOu8W0ttFlmoSKqL53n6/O0uHMRTRiaTlY32kKjAbixQmUwG8XgcarUaCoUCo6OjmJ2dhcvl2va2I5EIrl+/XpKaIlGQsbExaLVaGAwG9Pb21iwAZTIZ7rvvPiwvL2NxcbFqh1L+XL3tUuwArVAoIIoieJ6nrfDF75V8t6Swulpbe/7om62YEzpaW/Hg2bNobW2lx47L5UIymUR3d3ed75axX2ERHgY4jkNXVxdsNlvB7U1NTXUPv2uk4EmlUvTK9urVq7hw4QIuXbqE+fl5enJUq9UNez1GIfl1O8RzJZvNbhrlKRYboigimUw2LNojCAIdzkkiFTKZjKbRFAoFTb3tNB6Pp8CBvLOzsyHRJzJjSxCEgvRUfsonGo3C7XZjfHy8rtZ4QRDQ09OD0dFRTH3hCzSVA9ztUJp86qltv4d8SJoNyJ0jmpqa6L8riVOS9iJpsNkHHsAzyIkc4G5b++yDD9LtKxQKak6YTzlzQp7nYTKZ0NLSgvvvvx9tbW0F+yKXyyGTyUrOi4yDy5GM8IRCoQJDPEbu5FKu08nhcMDj8dScOmrUIkM8X8xmM/r6+hCLxbC6uop4PI75+XmsrKxAFEW0tbWhs7OThZwbjN/vp6ks0pUlk8m29TmTK/atRHuI30uxYzBxOc5vjyepkc2GjRJILdtW8Pv9uH79Oo4fP05TbWq1ekueVsUUR6+IZ07x+/H5fPD5fHUvzFqtFrYKHUq2HUhrkcGrBoMBg4ODWFpawsLCwqZWA+Sc8oEnnsAXHn8c18+fp23t0w88gA989rPUQ0gQhE1H3hiNRhoVq9bw4HA4IJPJGtpxythbjqTgye94MBqN4HmeHdRV6OjoqFnwuFwutLS01LSYpdNp+P1+6icik8noVGJBEHDixAm6HZ1OR4uhU6kUgsEg3G435ufn4ff70d/fD61Wy4RPg3C5XNQPBUBd/jebiV4S7SE1HJtBak6qRZbKTR0ng3GLZ3uV29/tFEIHg0Gsr6+j5U4EQRCEhgieYioVFlutVlit1rq3JwgCIl1dkJaWStJE605nSW3MVlCpVOjp6YFGo4FSqSxwLLbb7TRttBmkHuyjX/wiFbmjZXyGkskkmqxWDJw9i7//+tchTkxg1WjEqXe9C63t7Whqaqo5KszzPOx2e31vmLGvOZKCh2C1WiFJEgKBADQaTcEJnnGXetptE4kEgsEgTCZT1cdFIhFcunSp4ASef3KpJlyUSiVsNhv0ej2Wlpawvr6OixcvwmAwoLm5GXa7nQnYbdLU1ASfz7el59YS5cuP9lQTIvUY4xUbYBJI3Q/P81AqlQ1pH69Gd3c3fD7fjpgkFgsznU6HkZGRLQv9X3/uOfzl8DDeGovRaMizKhUGPvjBquMWakWtVlcUDUqlEnq9vuYZXxzHIR6P0/dK0pkkvQnkzumDg4NQKBTo/9SnEA6HceXKFdx75sy+KHRn7C1HvoaH4ziYzeaGmYcdRur16Lh169amdR7RaLRgYZTL5XXPyFKpVOjq6oLFYoHdbodcLofP54Pf74coitjY2KDOzOFw+ND6wuwEbW1t0Gq1W3puPQt9IpGgowfyIa3U9Rx7xACz2n7lTzeXyWRQqVQNESb5Ikur1eL06dNb/vzKQfY5/xh2Op04c+bMtuqiWjo68Eu3buHPH3oIz/X34/97xSugffppAMgVM1++jHctL+Mjly8j+uijNXdwcRwHp9OJ4eHhqo8bGhra9OKIHAuiKBYIO9LtRW4zmUwYGRmh6UlRFBGPx2Gz2XYk4sY4eDDJe4d4PI5MJgO73c7SIkV0dHQgHo/XLAiTySQWFxfR19dX9v5sNgu3211wGykQrBe5XF521o0oigiHw7hx4wbt5tFqteju7obFYmHfcQ1sdSEl3im1fMZkJAVZ0PKLc7cyo6qW55CUiFwub1i0JxAIFPhBabVanDx5Ei+88MKWhXb+BPFkMlki/hoVsWjp6MB7/s//AZCLvF68eBHnPvjBsuMWPvvUU7BuUtCs0+lw/PhxqFSqTV9bLpfj1KlTOH/+fNlhqSQCSI6p4ohfvllhT09PwTE7OTkJj8dDu04ZDCZ47tDT08MWwQrwPI/h4WG0trbixo0bNdU7LC0tUQt8u92OcDiMaDSKYDAIn89XEAFSKBRbypWTKI5SqYTBYKDf39raGrLZLHQ6HWQyGbLZLORyOdLpNObm5rC+vo7h4WFEo1FEo1FotdqGXo0fFjQazZavjGUyWV2RE3I81DoSoRykYLnW33Ejf+9+vx+RSKTAdJOkXtfW1jZ9PmnPBkCdkvMLrvP3led5nDhxAkajsWH7TyAu5pXGLWxWzKzRaDA6Olr3dPG+vj6cf+GFAnfknl//9cLXL1PDlJ+q9Hq9Bc0oZNRJV1fXlp3fA4EA7frbTcsNxs7ABM8dmNjZHIPBgAcffBA+nw+BQADLy8tVH+/1euH1ejE1NVVQXJg/oZl87l1dXVvap1gsBo/HA7vdDofDASAX2ia+H/feey8WFxcxMDBAC1vJSTOTySCdTiOVSjHBU4btpEr2YtAnEbW10sgUpyiKuHTpEoaHhwvEe29vL4LBIO0kK3eeIUM+iyM4pMU+/7djtVphNpsbZnJYDM/z0Ov1FcctVCtmNhqNtFutXpRyOcKPP47fGhu7O4vrxRdheOIJaPPECkntAYWeTOl0GsvLywWfTX9/P3p7e7cVqbx+/TpEUURPTw9tqGAcXI58DQ+jPogvRX9/P+69917qp1GN4k4KhUJBnXiB3El2KyclnufR2dmJEydOULED5K6sdTodNBoNtFothoeH6dUecFfcGo1GtLa27tjicdAh85m2wl5MmN7LixZSEzQ7O1sg9ARBoGaeCoWCtq4Tl+NqkZD8zjONRgOTyUQjrTuJXq/PjVtQqQo8b0gxczl6enpw6tSpLUdBzn/5y/j1O2IHyEWT3jQ+jtXnny94XCKRoOm9TCZDRaQkSZDJZLh161aB6N3OcRiLxeh3SQbnMg42LMLD2DIGgwGjo6NIJBIIBAJwu90Fc5eA8lf6ZMAkuaJlgmP/QVyE86+ma2khJ2xFfOz2nKxGRXhIjQ2Q+9z8fj8sFgu9X6PRoKWlpSAiWstnyXEcWlpaYDabC1K2O43BYMh1Yz39ND771FOweTxYdzox8MEPlnRpcRwHq9WK9vb2be0fPz1dNoUmLC4WjDQp9xqkbov48Fy/fh0jIyPbNiXNr+9iA4oPB0zwMLaNSqWC0+mEw+FAPB7HxsYGotEonE4njEYj4vE4rZ1RKpU0lQTcndY8PT1N621IZKGpqanA6p2xe0Sj0YIOmGot4o2I5pC2460+VyaT1TTni0C8ebZSGF2MUqksEGoulwsmk6mgCH8rn5HFYtlyqnc7mM1mKBQKWJ1OWqBcLo3V1dWF5ubmhth5ZHp7y46NiNbg6SWKIhVF5Pi8dOkSTp8+vS3RMzc3ByBnl9Hb27vl7TD2D0zwMBoGx3HQaDQlV0MajQYjIyOYmZnB2tpaQcSH4zh6YimGOMgeP358T1IkR5VUKoWJiYmChYbjOCQSCVp7RWonMplM2VqdcsJIkiQ6XoKkIkhaopaRFZWot3292j5uBXJskjlefr+f1vOQYtlaxZwgCGhqaoLNZtuzyKdCoUB/fz/Gx8erPq6jo6Nhv8uX/Jf/gu///d/jlefP0xqev7/vPnS/4Q01uXLnC861lRXc/MxnMOX1ItHfj9d87Wto2UL9jV6vRywWY4amhwgmeBi7Asdx6O3thVKpxNzcHB0FUNyKnn97JpNBNBplYmeXqZS+IqKHCJZ6oyOCIFBRUyxSdnNB2YnUGTHAI8dqJpPBjRs30N3djebmZthsNjqItRI9PT3bTg01CpvNBp1Oh0gkUvExyWSyYbPs9EYjXv7DH+LHX/4yZLOzyPb04Bfe+17cmphAOp0u+30pFIqCurxkMomgz4fg296Gj8TjOeG0uIjnRkbwi+PjdYue/v5+ZLNZeL1eqFQqKBQKmM3mffH9MLYGEzyMXYPjOHR0dKClpQWJRAKrq6vwer0FDrgk5UUWXDa4b/dRq9Voa2srqDkhs4pI8W2t0RhSkC6KYsFzUqkU7U7KJ184pNNpiKJYtruJ3LYV8dJoAU0+m3K3LywsgOM4OByOkloUhUJBvaE0Gs2+cgLmOA5Go7Gq4CGT4huF3mjEQx/9aMFtNpsNS0tLAEBnqWUyGSqYi6OQNz/9abw3HsffAwgCiABwRqP467e/He//53+ua384joNOp4PRaMTGxgb8fj8MBgNOnDixvTfK2DP2zy+McWSQy+V0NlZPTw/thhgbGysxgmPRnb0j37I/P3pRq8DIb/8vB8dxBaJHoVCUmMqRCe2k+yeTyVDvFblcjlQqBZVKRaNP9exXI+B5vqL4I6MQ5ubmqC9UMBiEwWDAwMBAQ8XCTlDsXROLRAp9cj72sZq6NLdDR0cHFhYWIEkSjh8/jpWVFayurpat+ZIkCYblZfwEwKsBmhp7HoBw7hzCwSD0dXgX8TwPv9+PtrY2tLW1IZVKYXJyks71Yhw82GrC2FM4joNWq4Ver0d/f3+JwNnuohAIBDA5OQmgvplgRx1SP0LEgUKhoM6/crmcnvCVSmXFotXNxjak02nasZefniAQwSWKIm1FJmk0MvCTpDLyXZo3Y6uFyjzPl7zXzV6TLMqzs7Po7e3Fz/3cz+HkyZNVj+tUKtWQYurtYrPZ6PuNRSIIPPYYfutrX8MjP/gBfutrX8P1N70J4aKuzEZDjh/Sxj84OIiXvexldFBrPrFIBAvRKBU7uPP3qwD0pdM4/+Uv1/XaHMdhZGSEdsgJgoDjx48jGAziwoUL++I7YtQHEzyMfYPFYsHIyEjBwrcVh9R0Oo1EIoHp6WmMj49Dr9cjm81ibGwMy8vLZS3sGYXo9Xr09fXRKdekbieVSlGzRgC0M6Z44ZfJZJsKTEmSIAgC9WTaauSFPK/WaCBx3q4XUldGEAShpmhXMpmkDsbl6j8kSYLf74fH48HExAQuXLiwLQ+kRiGTydDfn+vPWjp7Fm++fbtQSJw/X7eIqBeFQgGDwQC9Xk9FtkwmQ0dHR8G5IRaJIPThD+PfhcNl29vlAGSzszW/br7QUiqVGB8fp+NwyLFTbMHB2P+wlBZjX2G1WmGxWOD3+yGTyUrs+quRyWQwPj6OYDBIu4gkSUIsFsNPf/pTOl9LLpfjnnvuoXUiOp0OPM8jkUggGo0im81Cq9UiEolApVLtiIX/QcDhcMBisWBsbAx+v7/qY4mlAJBbwItbvslMKHK/TCYrSENtpy2dtMvXkmYgUSqgNi+cfHieRyaToXVJtab2SOptbGwMp06dgiiKCAaD1L+KDLvN/wz3S8rEarXm0s8rK2WFRD0iYiuQKF9xRIfjOAwMDGB8fBzpdBru730PvzE+jh8BZdvbMwC4np6aXlOSJMzMzFCxR6KIsVgMi4uLMJlMcDgcR/a8cJBhgoex71CpVHSO0MzMDPR6fU2jH/x+P3w+H/2/XC4Hx3GwWCy08BHILXQ/+9nP6P/1ej3MZjPW19cRj8fp7LBAILDjrrb7Hblcjt7eXty4cYPW15Cp3fm1K/nTvCVJgiiKtP4GQEn7ev7iTthKhIeIJkEQahJMpNiVtMin0+my74dsmzyGDBoldUekpb4WiEiKRCL46U9/uun7NBgMDfG2aRQOhwOXmpvLColsjSJiO4iiWLZ5Qa/X44EHHkAoFIJraQkcgAcBfBelNTzx06fxy+99b02v5/F4CpzbAeD48eO4dOkSTCYTOjs7AWyezmTsP1hKi7Hv6O3txenTp9HX10eLmaPRKIC7k9avXbuGubk5GiFIJpMFE9glSaIFriTSU4lwOIzFxUWa6iKvubq6ytJfyE2/vvfee6FUKqlgILPKCKTOhqS8SNor37MnH1KDk18LtBVfHKVSCY7jkM1mK3r/kI4ukj4D7tbWkKt30jVGBkUSAUXqg0iHGoAC48xaSSaTVFiVg+M4Kgj3m/O4zWZD+2tfi28MDRWMmvjr48dx72//9o6+djweRyqVQjgcrvjZabVahO8IMj2AX0RO5PwlgKeamyF+9KP45R//eNOCZUmSsLy8DEEQCoaQkvuUSiU1INTpdBgbG9v1eXGM7cFVWwjOnDkjXbx4cRd3h8EoZHJyEhsbG7TLJRaLQalU4tixY5ibm6NRGLfbXVIzUq7tuV4MBgM6OzvR1NR05P03lpaWMD09Tf9PalhIBxcRF+UQBKGkA4u4bJMaoHqLQElNTDabpZGXYiFSrn05/z4iauqh3NTuevaZRL5I0XWxi/UDDzyw7zq4pqamMDUxgcRPfwrT6irCTicUL30punt7MTw8vGOvu7y8jKmpKQDAyZMnK4rBmakp3HrrW/GqCxdoZOf7DzyAl//whzV3ZkWjUWqeWo5kMkmP95s3byKVSuH06dNbnsTO2Bk4jrskSdKZcvexlBZjX9Pf34+Ojg6k02lMTk5CFEWMjo5CqVSis7MTa2trcLlcZYVNJpPZtugJhUKYmJiAWq3GsWPH9k1txV5ATNfIYp9/dUvqVGqFtJYTtnKlTKZkA4XpMCJuqokdAAUmiLXuu0wm29ZVPYmEAbnPjBTAktusVuu+EzsA0NfXB5PJBOurXgWO47C4uIjZ2Vmsrq6is7Nzx2ZNGY1G9PX1YXp6GmtraxUFT29/P+z/+I8FxoUvf+9762pDr5Y2d7vdmJ6ehlwuLxDI0WiUCZ4DBBM8jH0Nx3FQqVRQqVQ4ffo0FhcX6eKm0WjQ3NxckMoqhqSzSCSg3itzUpyaSqVw69YtnDx5clvv5yCj1WoxMjKCyclJ8DxPa2GqpWqAu3U2+cKDRITqhYxvIAKr2HiOFEvnD/TcjHqEMYkmbSUiVW5b+bVBAGh9yH6D47iCOhqVSkX/HQwGd0zwEL+uWCwGr9dLU4PlKGdcWCvkWKzURefz+TAyMgKj0Yjz588jnU5Dq9VueRwKY29gNTyMA0VHRwc94XEch/7+/qrFg8S7hRSO1puWyl+YA4EAxsbGjrT/hs1mw4MPPkingXMct+lJnxT55kM6uQhkmGe170epVNJi6HLuy+R7rldIiaJYts6oEvW2wVeC1BSR92G1Wg9MtMBgMNButVq7KLdDV1cXVCoVLl68SCO9jeTWrVu4fv162fuIH4/FYqG1VqSxYaeNFxmNhUV4GAca0klTS3ExuTonbHaVTtqQCZIkYX19HalUCgaDgba8a7VaNDU1wWQyHYk6H+LPotPpMDMzU2D3X078kIhL/mej0WjgdDrR1NREPWoAIBKJ4Nq1ayW1OCSVUKk7qp60VDlIqzzZ380g7s9bXXjJKBXymfA8f6AmcqtUKtx7770QBIG6YO8kSqUSJpMJ8XgcGxsbiEQiGB0d3fY4DjL+Y21tDQAwPz8Pp9NZEMEC7kZ+ZDIZTp06hYWFBchksn2ZfmRUhgkexoGnnogLuTqvJYUhiiJ1C86fgZRIJApMx6LRKFwuF5RKJUZGRmAymep/EwcMjuPQ0tICk8mEGzduIB6PF9TOmM1mqNVqcByHcDiMZDKJcDgMo9GI7u5uGI3GsuJQp9Ohu7ubumMTthKdIygUioqRH1KTRbad30pfjfzOr1pTZ2QoLvF8yn8/XV1dB27x3InIzsrKCubn56FSqWAwGNDb21twXBEhnEwmMT09jaGhoS2/FrG9IGIHyAmeQCCA48ePVxRTer0ex48f3/LrMvYOJngYBxpST1EvxemI4ggE6aYhoogU61Zrn06lUrh27RqOHTsGq9Va9z4dRDQaDe677z54PB7EYjGYTCY0NTWVTffUmjZqbm5GJBJBPB6H0WiE0WiEx+PB6upqxeeQlGVxxIWkjchYiPz0VTabLRsVIt1bZJ/LCeP8ye9ku8VRKbI/JF1HWvaBwloRi8WC9vb2TT+Xo0BzczP8fj/W19cRCoWQzWYxMDAAjuPQ3Nxc0CW4sbGx5ddJpVK4ceMG9VgiqWulUomBgYF9NciV0TjYt8o48KhUqrr9ctLpdEFKi6TGRFGkdSn5i2d+23WxOMpf6DiOw9jYGE6fPr0rtQ37AZ7ny842KqZWYUpcdPPR6XSQJKngajyf/BZ3AAXihohVch8xRqxEOUPFfIpTo6R4W6VSFfgOkQLbdDpdUSRrtVoMDw8fiVRoLXAch+HhYchkMng8HrjdbmQyGQwNDUEmk8HhcFDhu1XjPzJmJhwO00L3VCoFQRBwzz33MLFziGHfLONAs76+vunYg3KU81LJrw/JX4AUCgUVNWQ6dzlPGfLYZDKJtbW1IyN4dgOFQoG+vr6KggfIDYcltRdEhJRbFOsRF0TgBny+gknhHa97HdR5bczFfj5EFImiWNWbqBF1KIcNnudpqsrj8VAH9FOnTmFgYADr6+sQRRGJRKKuYvNQKIRAIICNjQ0Eg0F6kUNqw4jDO+Pwwn5pjAPL7OwsFhcXt/TcbDZbkJYAQMcMFF+NF6cqkskk5HI59WSRyWS0/Z1sb319Hd3d3ezKvYHE4/GKLcnksyeRHBKZaUTbcDQczk0KvzM8UwLwjXPnoPiTP4G8SsFutfETRqPxyPs6bUZvby+SyST8fj8ikQhu3ryJnp4eHD9+HLOzs4hEIpiYmMDIyEjFbZCOqmw2iytXrhSITxKNI7/RYDAIj8eD5ubmuveVWBsw9jesLZ1xIMlms1Wv9svB8zwdGyAIQkmdiUKhqDjhWxAEyGQy+jxiIEcms5PxBOSEGo/HcevWra29OUZZfD4fkskk/dxJFCeTyVBhk7+ANUpsLn772yWTwt98+zYW/uZv6t4Wx3Ho6enBqVOnmNjZBIVCgdHRUWo2GAgEcPnyZdy8eRPt7e1obW2F1+utKCpFUcSNGzdw9epVXL16lUb8FAoFFcTFBerE1T1/G8Vks9mCqDKpBwqHw41424wdhElSxoFjY2MDMzMzNO9e72iA/FoOkgIhC2ilRZI8p56OsN1o1z1KSJJEFyvyXRGRSQwHN1us6kUQBKjvDKbMhwOgcrnq2pZarcbx48drGoTLyMFxHNrb2wsEhiiKmJiYoPP2Kv1mo9Eo/H4/LUIn5wpik1Au+sfzPHw+H2w2G4LBIG7evAmNRgOtVkv9nwKBQME4DdK16fV6D4yP0lGFCR7GgUKSJCwtLSEWiwHInWzyu2rS6XTFmglSX0PYyhylWpHJZGhtbaUhdcb2CQaDZbuc8rvp8tnqvKt8RFGkgymLJ4VHW1oQi0QKanvaX/taaMrUbun1eoyOjjIRvAXMZjO0Wi0dIAzkvpcrV67g+PHjFW0giOAtJ2zKiSSNRkMLyEVRxOrqKkZGRqBQKKgnVzweR0tLS4FPD/Hhstvt23ynjJ2GCR7GgSISiRRc7XEcVzBPibQAl5tmnU6ny7Yu7wTZbBYXLlwAkHMn7uzsRCaTqeg/w6hOLBYr8D7Kh0xdL+6WI8M5t0Mmk8lNCj93jqa1JADfGBpC00MPla3twZNPFogetVqNEydOMLGzRTiOw6lTp3D16tUC0UPMLiuh1WrrGgGS7/QdCASgUChgNptpXVgmk4HD4Sh5nkwmg8ViKRivIYoiYrEYPB4POI6D2Wyms+gYewcTPIwDxezsbMX7SBEx8dMovrITRXHbjrxbIRgM4vLlyxBFEXK5HHa7HQ6HA8Y6BhsedapF4jiOK4ii5c9Pq4TX48HEk0/CsbqKVYcDg489BqvTWfAYUoxutlgg/+M/xle/8x1ol5cRaW5G9xvfiLm//mu8q0xtz1fOnsXAW99KjSuHhoZYvc42USgU6O/vx9WrVwtuv3r1KoaHh8sOFZXL5ejr68Pk5OSm0T6dTleQplpfX6cz+ohoOXHiRMXnt7S0FBxvS0tLWFxcpJFHl8uFe+65h/3m9xgmeBgHikqLGFn0iODJZDK09Ty/Bb0RaY56yRdYmUwGKysrWFlZwdDQEJxFiyyjPGazGRaLpcBsjuO4ktbv/EGxlfB6PIg++ig+kkjkIjPLy3j20UeBp58uED1knIUgCFCqVOh75JGC7WiXl8vW9mhXVgDk6n8GBgbYItcgTCZTyTGQSqWwsrJScYo6MTLcrMHB6XRSp2tJkhAKhQAACwsLaGpqwrFjx6q2rBeflzo6OtDe3o7x8XGEw2Fks1lEIhF6LMRiMczPzyMcDkOj0aC1tZVFgHYBVlzAOFB0dXUVzBwixYgymaygjoOkrciCyHFcxVqPvcLtduPKlSu4cuUK5ufnEQwGEY1GEQ6H90SY7XcGBwdpW7pSqaRmkESYkNs3+44nn3oKb78jdoCcSHl7IoHJp54qeFx+MXQ5SG1PwXOQq+1RKBQ4efIkHbLKaAzlXJDX19dx7ty5is7LtUxyz4/A+f1+RKNRyGQymEwm2hZfjXQ6DZ/PB5/PV+Dl1dzcDK1WC7lcjkAgAEmSEIlEcPHiRaytrdHZYNevX8eFCxcwPj6O1dXVutPuJH3GzhvVYREexoFCqVRi5c4VNADqaFsO8uMn0Z9sNkvFz34gvyYlGAxifn6e/l+j0aC3t5ctmHkolUqcPHmSpjWIECHRPKC2VnS7x1M2MmPzeApvu+OjIwhCWRFVqban7eGHYbPZWDfWDkDMGq9evVogClKpFNbX18v+Xrq6utDR0YF0Oo3l5WU0NTXB5/PB7/dTt+X8wmetVgu9Xg+e52G32xEIBOB2u0sidalUCmNjY+jq6gKQs03geR4rKytob2+nY1FmZmaQyWSwvr6Oixcv0vNQMfF4nJqWTk9Pw263w2q1wmg0btr4oNFoIJPJMDs7i46ODlYvVgEmeBgHhkQigStXrtDi1Hpa0uuZqr4fiMViuHHjBtra2goGKB51NBoNTp06hcuXL5fcV2uB6qrDAakoHSUBWHc60V/0WDKLq2xXj04HPPkkvnL2LLQrK4i1tqLrDW+AQqlER0dHfW+MUTMGgwEDAwOYmJgoiGhUczYns9R6enoA5NJjJCpjNpsLIjyCIKCrqwszMzNwOp3w+XxYX19HR0dHQbSICHCSWs1PqxFBI5PJ0NPTA51Oh1AohOnp6ZrOWUScLS8vQy6Xo7e3d1NDRI7jYDAYMDs7i8HBwU1f4yjCVQuBnTlzRrp48eIu7g6DUZmVlRVMTk7iC48/jp7z5zEIYALA7AMP4ANPPFH2OSqVCul0uiAKcNCwWq3o6uqCRqNhLe538Hq9mJqaot1YpDOvllQAqeEhaS0JwLMqFbRFNTz5YwdqRZIkDAwMoLW1dQvvilEP4XAYExMTNN00MjLSsNbwtbU1zM7O4sEHH4TP50MkEkEwGKxauFwLoijSaNTy8nKJ0Wm1LtKuri4aTcqHjNfweDxYXl7G8PAwNBoNHYty1M4ZHMddkiTpTNn7mOBhHBQymQxe93M/h9eeP493AnSxegbAd8qInq2YEu53uru70dnZude7sS+4fv06fD7flp7r9Xgw+dRTsHk8WHc6MfDBD5Z0aeXPUKsVnufx0pe+lI0Z2CWy2Sxu3LiBQCCAY8eOwWaz0fsmb97EX7/mNXCur8Njs+HX/+7vMHD8eE3b9Xq98Pv96O/PxfwCgQCSyWTZtvRaCYVC0Ov1VEATT7GZmRn6mGqCRy6XY2BgAFarFTzPw+12U9dnQRAQiUTQ09ND03OSJGFhYQGdnZ0H9mJvKzDBwzgUpFIpfFgQ8EcoNYH7rwAe/slPCh6/W547u4lWq8V9992317uxL1hcXMTCwkJJGqtR1gMkalTPYqFWq3H//fcfqQVmryGRjFu3biEYDEKtViMRCmHiF38R7xBFemH0FzyPl167VrPoaTQ3b97EyMhIQcRFkiRcvHiR+gvVcs6Sy+UYHh6G0WjE6uoqgsEgzGYzHA5HSTRnYWEBQK5r7Kgck9UEz9GKdTEONEqlEv1A2YLTAQBvfsUr6G2CIBw6sQPk7PIPW9Rqq7S2tpaNpJAFkEA6+eoN7WcymQJH3VpgM9R2H1JcrtfrkU6nEQwG8fwjj1CxA+TOEe8QRTz3qlft2Xmhv7+/5BjkOA5NTU11baelpQVGoxFyuRytra0YGRlBc3Nz2eO7o6MDarUaqVQKa2trR76LiwkexoFiAijbCjwN4E3k/3d8eA4rh/m91YNMJitIYRDI1HtSv0BGihDjx3pIJpN1C6V6RRJj+yjvFIqfOXMGAwMDaA8Gy14YOb1e3L59G8vLy/D7/bsqAIilQj61eAQ1NTXB6XTSY3d1dZWO1tkMjuNgt9shCAKampogSRLW19fh9XqPpPhhgodxoIj8yq/gGdwVPaSG5+cB2mHDcdyhraFQKBQ1+YocFSpdHadSKWpAWGz8WEton3T1CIJQt0tyNYM6xs6i1WrR0tKCdYej7IXRqtUKlUqFQCCAGzduYHJykhpXrq+v4/bt21hYWIAkSXC73Zibm4PP56MmgYR0Oo319XUsLS1Rk8KtEI1GYbPZcOrUKfT29paI65MnT2J0dBRDQ0N46UtfCoPBgGQyiStXrtQseghyuRw8z8Nms0GpVCIcDiMYDNY1EPmgczhXBcah5avf+x4e5jjcANCHXGTn5wE8DOD3AIzceVwikahqGndQsdlsRyYXXwv5c9XKUfxZ5btuV6PcoFmlUolsNrtphG11dfVI1UzsR3797/4Of3HyZEkNzyPPP09b0/MH+6bTacTjcdhsNuh0OkiSBL1eTwcTt7a2QqFQQBRFeDwerK6uQq1Wo6WlZVsT0tva2ui/TSYT9Ho9PB4PUqkURFGk7s9AToQPDg7iypUryGQyuH37Nrq7uyu6TFeDCCdRFLG+vn5kHN+Z4GEcOK4AeA1Q0qn1V3duB+4udMRdmbQY50NmbvE8fyDqYgwGQ4HLNCP3mdRDpTlrtTyPtKjzPF91fEUsFoPP52OmkXvIwPHjwLVr+MzDD8O+vo41mw1vOHu2oGA5P5qiUCiodxLpbvJ6vTh27FiB6JidncXa2hruvffeHUldmkymitPfgVwE65577sHNmzcRCoVw69Yt9PT0wOFw1C2w19bWIJPJYDAYNp09d1hgXVqMA0knx+F1yKWxppATO98o6tLKRy6XF1yZk8nI6XT6QPzYjUYjTpw4cWhTdVtFkiRcvny5IN2wGbXYFVR7DLnqr7YNjUaD0dFRVs9zgEkmk5DJZAW/uVAoBI1Gs+O/Q1JYXal+TBRFJBIJOprCaDRuuWU+FothY2MDbW1t+/48WAvVurTY2ZNxIFm4I9QDgQCuXr1KIzuVyGazUCqV1I03/wo/f/DofkSlUmF0dJTVhpSB4zhYrda6BE8mk6HpCblcDkmSSiI+lS4EyWNJPUT+MUOEkCiKiEajSKVSTPAcYMoVGdcTUZQkCWtraxAEoWrUphyLi4tQqVQVU008z0Oj0UCj0Ww7kki2cxSKmJngYRxoyk1QLgdZqCoJm+Kajf1Eb28vEztVqPd7y2azyGaz4DiOjo1QKBT0arqau3L+zC5yHJFasfznbeVKOZ1OsxlIhwRijWA2m3Hu3DnY7XY0NTVBp9MhlUohk8lUrMcjBdSCIOxqbc1hiO5sBhM8jANPb28v/H5/TREaURTLOugmk0m66NVSmLpbtLS0wGq17vVu7FuCwSDcbnddzyGzj/IpPh7IkNniYbNEMOenGvKnY+eTSCTqighcunQJo6OjrAvvgCOKIm7evFnQ9r62tlbQfi6Xy2GxWMpeyGQyGUSjUUSjUYRCobrr1BiVYW3pjAOPRqOpa1hjpWLTdDqNZDJJi5xJQfNe0dzcjP7+/iNx5bUV0uk0bt68WXcongiZYjGTTzabhSAIJfeTCAyJEFWjng7BQCCARCIBl8tV83MY+5O1tTX4fL6Kx6VcLsfx48crRm3z29w3i1wz6oNFeBiHAq1WW/Nja4kEkZoO0sacv7jFIhG4/vZvoXe7EW5uRvtrX5ubnN1gzGYzEztVWF1drXvWVa2QolCCJEm00J2MnJDJZAWprXLbqIVAIIDr168DwLY8XRi7SzKZxOLiIkRRRE9PDxQKBWKxGCYmJqo+z2g0Vq3pyRdKsVgMqVQKCoWCnQsaABM8jEOB1WqtqZYnnUxi5pvfhMHjqUmskDZmsrDGIhEEHnsMv3X7Nm2J/8a5c8CTTzZc9ByFIsLtsJkHTyXq+VyJU3M6naa1P0CuoDWVSlXt5orH45tuP5VKYXZ2loqjeDxOp18z9i8ejwfT09M0nRkKhdDd3Y1oNLrp8UV8gCqR3wG2vr4On88Hu92OgYGBXRc9kiQdKosFltJiHAo4jsPx48erFvjGIhFs/N7v4beffhqP/OAH+K2vfQ2Bxx5DLBKpuu38ep6ls2fx5jtiB8j5AL359m0snT3bmDeSx2EzTWwkmUxmy4KnVorHUuRTy8JTrU1YkiREo1FcvHixIKqjUqnq6jhj7D5erxcTExMF54VoNIqbN29ibm5u0+ePjY0hEAhUFEbFHYPZbBarq6vb2+ktwnHcoUqr7bngqeUqiMGoBY7j0N7ejvvvv7/sjKWls2fxxvHxusUKqedRKpXQLi+XndGjXVlpwDsopFxbLCNHMBjcso1ALdET8phEIgGZTAalUklb2IG7Rc2VRGlra2tZB95UKoX5+Xn87Gc/w89+9rOSxa29vR1Go7Het8TYBSRJgt/vh8vl2lb0NRaL4erVq7h69WrZ9W99fb3kNlEU92yt7OzsRCAQ2NY2yCiOvWbPU1rMp4LRaARBwLFjxxAKhTA/Pw+fzwcA0K2sbEms5Kcsws3NkFA4sV0CEG1pacSuF6Dbgbqgw0Imk6GmcJlMpq5oGBkqWkkw5TsxE1FDtq9SqZBMJmkNT3E3n0ajQWtrK1oqHA/r6+uYn5+H1+PBxJNPwrG6ilWHA4OPPQar0wmVSsVqNfYhyWQSt2/fhlarRTAYbMg2g8EgLl++jJaWFrS1tdHUaaWIisvlwuDgYENeux4EQdiWXUI2m8Xi4iLsdnsD92pr7LngYT9uxk5hMBgwOjoKl8uFmZmZhoiV3je9Cd944QWa1pIAfGNoCG0PP9zQfZfL5XUPrTxKCIJQIHTy6x7yr76JR05+VxbP85DJZPQ2YkaZzWahUCiQSqUqFqbnn6/yRZZGo0FfX9+mheZutxtejwfRRx/FRxKJ3DG0vIxnH30Uiuee29JcJMbO4/F44Pf7G55GTafTWFhYwMbGBpqbm7GxsVFRiLvdblocvdtstVt1cnIS2WwWQ0ND+2Kt33PBw2DsNG1tbdBoNMi+6U34qxdfxJvupLW2IlYUSiWavvAFfOU734F2ZQXRlha0PfxwwwuWD4vN+06h0+mgVqtpJ1Ul36R8UULckSVJQiKRgFKpRCaToYZ/oigimUwiHo1WLEwvl2bU6XQYHR2tSaAqFApMPvUUfv+O2AFyAvztiQSe/Pzngde9rs5PgrHTiKK47ZTOZkQiEUxNTdW0LwcJvV5Puxn3A0zwMA49HMfBYrFAbzQi8cQT+Or3vgf10tKWxIpMJoOgVmPgrW/dwT3GtiYwHwXkcjlOnDiBixcv1lxPwfN8Qc1MftqKwHEcls6exbvLFKZ/5exZGN75zoJttrS01OWEbbFYYPd4yqZWHXnGdIz9w8zMzI4XyNfK7Owsent7D0z0t7m5ea93oQAmeBhHBrVaDa1ej2OPPrrpOAJJkqBSqQpcl8mspJ3unpLL5Uzw1IBWq4XZbKY1WptR7Sozk8nQFvNqtV75of2Ojg50d3fXdfVqMBiw6nBAKip+lwBEN2lXZuwOkiQhmUwikUhgbW0NKzvQkLBVVldXsb6+jq6uLrS3t++byMlBgQkexpGhngnHpDg1H+K7stMMDw8fmCu4vaatra1mwbNZJIh8v5GWloq1XvmpM4fDUfeCs7q6io7f+R088+53452SRFNmf8FxeOiLX6xrW4zGkc1mkU6n4fP5sLa2tuMprO0giiJmZ2cRCAQwOjra8O273W5Eo1H09PTsqdP8TnC43g2DUQWSdshms/vW1K+pqenQmHztBmazueZZQ7WIk1QqhZ43vhHfGBoCOUJIrVfPG99YUEOxuLhY175GIhG43W7EX3gBr5ck/BjATwD8GMDrJAmLf/d3dW2PsX0kScLi4iLOnTuHF198EZOTk/ta7OTj8/l2xJ+HDCy9evXqvh2ovFVYhIdxZCBX52RWFilWzW89JsWr1UYWFI+aaCRNTU07st3DCsdxGBoawuXLl6sOfBUEoWaRK1coYPviF/G1b38b6qUlhJub0fPGN0Je1B2ztraG/v7+miOHU1NTEEURupUVGAA8VHS/bHa2pu0wtk86nUYkEsHMzAwimxiP7mcWFhZgt9sbej7iOA59fX3weDy4du0aBgcHD403FBM8jCNDvnEXcdHNZDKQJInW7CSTSUiSREcHFJNMJmmnT7WxAlvh2LFjZQ0TGdXRaDSw2+1Vay02E7H5cBwHvdGIvre8hR4b+eNFCJIkIRgM1h2Rq2SPkGU1PLuG2+2Gy+XasVlsu0UsFsO5c+fQ09PT8AJhp9MJq9Va9ULioMEED+PIkC94kskklEolvernOI6KF/JvlUqFRCJRcvVEnrOdkyXHcXA4HDQlw/M8q9vZBo3yJpHJZLRtncBxXMUr6Hpqumw2G4LBINpf+1p849y5Ai+n7z/wAF7+3vduc+8ZtSJJ0oEXO4R0Oo3l5WU4nc6GR57lcnldtY/7ncPzThiMKqTT6YIrFRKlqQQRPYIgFIihfLLZLFQqFSRJKhsNKgeJRtjtdmg0mvrfCKMsjRy2Wc7rpNL3W48vCkkLaHQ64Mkn8ZWzZ6FdWUHTAw/g5e9/P/SHJG1wENhPnVeNIBKJYGJiAgMDA4eu0LiRMMHDOBLEYjH6bzKOoJbFiix0MpkMMpmsYOEjQqjWyExnZyc6OzvZCWkH2KyNf7MrX2JKWE24EkdmALBarWhra6u5YBrI2SKQY0+j02HgrW+FxWLBiRMnat4GY/vkp68PEx6PB8lkEsePH2/oBcBhggkexpEgX/BsBVLUTBasfGoJI3d3d6Ozs3Nb+8CojMFgAMdxFaN2xfOziKcSSWtUEzukSD2TycBms6G3txdqtbrufZTL5bj//vuxvLyMeDyOtrY25re0B3Ach+7ubly9enWvd6Xh+P1+TE9P78nMrYMAu9RkHAnyazK2Q7krp3Q6XbWWQ6vVoqOjoyGvzyiPTCbbdA4VqfMhw0GTySSdp1UtskO+W7lcDqfTuSWxQ1Aqleju7sbIyAgVaYzdRZIkeDyeQ1szt7a2tm9tN/YaJngYR4L8BW2rKaVyUQClUrmp8zJpfWfsLCaTqer92+msI51atdZqMfYvJBJ4WL/LgzZvazdhgodxJCCLHM/zWx4Nkc1mc7O0BAGCINAFkHRzVeIwtXXuZxwOR1UxS6I69YrPVCoFmUyGWCzGfJIOCX19fXu9CztKoyLahw0meBiHnkQiAb/fD0mSCgpP64XUcSSTSZoO4Xl+00W0nsJWxtYRBAEjIyMQBKGgTZ146WwHURShUCh2ZbQIY+dRKBSHVrxKknToutAaBRM8jEPP6upqRfO4raJQKJDNZjcNHxsMBnR1dTXkNRmbY7Va4XA4kM1maSROEISao2wk7aVQKArqteRyOYaHh1lq8hDR19d3aL9P1qVVHiZ4GIce8uNvVDt4vkNzNZRKJUZHRw9tceR+pbOzE3K5nEbi6qnVIO3KqVSKLoZyuRz33nsvm3F2yNBoNIdmZEIx7FgtDxM8jENPI2toyCJYi4jp6+s7VC6lBwWZTIaeLY5pIPPUiKgFgJ6eHmYSeUg5jClKuVwOnU6317uxL2GCh3HoCQQCBZ4r20GhUCCdTiORSEAul1ccSul0OtlcrD2EjO2ol0wmU+DK7XA4Gj6jiLF/aGtr2+tdaDisK7Qy7PKTcehRq9UIBoPIZrPbPhGQ55MC5kwmQ2tESD1PR0cHuru72UlnDyETn3/2s59teRstLS3o7+9n3+MhRq/Xw2g0IhgMbms7giCgqakJZrMZKpUKMpkMyWQSLpcLsVhsV12drVbrrr3WQYMJHsahR6FQNKxouVw0h7QtcxyH3t7eQ3nVeBDZjs9Kd3c3Ojo6mNg5Amwl7azVatHe3g6dTgeO46DRaEqOFa1Wi6amJkiSBL/fj4mJiR0XPkqlkp1/qsAED+PQEwgEADSmaLlSSzvP8xAEgaU/9hFbmaDe1NSErq4uZiVwRJAkqW7PmtOnT9c1EoTjODQ1NWFgYABjY2M0EiwIAnQ6HTY2Nup6/UqoVCqcOXOG1Q1WgX0yjENNKpVCKBQCUFms1AqJFFW6795772XtoPsIlUpV4o7McRysVis0Gg2USiXi8TgtUrbZbFsSSYyDy/j4OKLRaMntPM/D4XDQouZEIgGlUgmdTrfl+WcWiwX9/f2YmJiAyWTCwMAAbt++va39z6erq4uJnU1gnw7jUON2u+m/yw3+rAdJktDb2wulUom1tTXE43EkEgmYTCZ0d3ezk80+Qy6X4/Tp01haWkIsFkN7ezv0ej0TpQzK4OAgdDodFhYWIIoiOI5DW1sbHA7HjnQ6mc1mWCwWDA0NIRKJQCaTbfu8BOTqFB0OR4P2sj5IU8hBaPHnqnmJnDlzRrp48eIu7g6D0ThEUcSLL75Ir/CrTdOuh8HBQZa6YjAOEZlMhjY17JZvViAQgEajweXLl7c9CmJgYAAtLS0N2rP6EEURV69ehUql2hfmnBzHXZIk6Uy5+1hbOuPQ4vP5qNiRyWQNmyAcCoXYNGIG4xBBLCZ20yTUZDJBqVTi/vvvx+Dg4Ja3o1ar9/QCjOd5HDt2DKFQCJFIZM/2oxaY4GEcWvLTWY2cIOx2u8vm/RkMBqNeeJ5Hc3PzlmuDzGbznkdVBEHA6OgopqamsLy8vG8vCJngYRxKlpaWCrofGil4nE4nczJlMBgNxel01v0cnuf3Te0MaQSYmpqijSKZTGZfXRyyKkvGoaS4MLURHjw8z8NqtaK/v39b22EwGIxiWltboVQqsb6+jkgkglgsBgDUsX19fR1ALoXV09MDi8XSsPmAjYI0bly5cgUqlQrZbBZ2u33fnDOZ4GEcSkwmE/23UqmsuwvCbDZDq9WC4zg6cdtsNrNOLAaDsWPYbDYqcJLJJMLhMB0E6vP54PP50NXVtS/tEwKBAHw+H/1/IpGAQqHYs+6xcrCzN+NQEo/HC/5fb0pLo9Ggr6+vkbvEYDAYNUMutAgWi2VfT0EPBAIFtTtOpxNDQ0N7uEel7K94GIPRIJaWlui/t5LKOoxTlBkMBqPREEPXrq4unDlzhhZQ76fIDoFFeBiHElIox/N8TdEdi8UCs9kMv98PQRD29ZUUg8E4Wly/fh1KpRImk4nW9wwMDEClUu3pfgWDQYyNjWFkZASiKCKRSECSJHR0dMBsNu/pvpWDCR7GoSOdTtMhfbVOSFepVGhra0Nra+uet3gyGAxGPjabDRMTE/B4PPS2ZDK5p4InnU5jenoaqVQKV69ehc1mw9DQEJ0cvx9hKS3GoSMUCqGpqQnt7e0QBKEmTwi3240bN25gcXFxF/aQwWAwasfpdBZ0nmo0mj21xpAkCTMzMwiHwwByJQB9fX2QyWSwWCz79qKRCR7GoYO0QpJRErX8+ARBQGdnJzo7O3dhDxkMBqN2OI5DV1cXAECn06G3t3fPZsKlUimMj4/TaJNKpcLJkycPRN0jS2kxDh1WqxU8z+Py5ctIpVI1efD09fXBYDDs0h4yGAxGfbS1tcFqtUKhUOyJPUYikcDq6ipcLhe1+TAYDLBYLFCr1bu+P1uBCR7GoWN8fBypVArhcBgcx9VkzsWckxkMxn6G47g9ERaSJGFlZQXT09MF5QEOhwPDw8O7vj/bgQkexqEjFArRoaEAKtbwaDQa9Pb2lvhdMBgMBiPH3NxcSW0jx3EHMv3PBA/jUOHxeArEDlBZ8Bw7dgxarXY3dovBYDAOHJlMBh6Ph9ZDAjmrj56eHmg0mj3eu/phgodxaEilUvD7/VCpVEgkEgByP85UKlW2cNnlcqG/v3/Piv8YDAZjPyOXy/HSl74U2WwWa2tryGQysNlse+7/s1WY4GEcGpRKJVpbWxEMBultCoWiovGgx+PB+vo6urq60N7evlu7yWAwGAcKmUyG5ubmvd6NbcMED+PQkM1mcf369YJBocT2vBJyubxg0CiDwWAwDidM8DAODX6/v0DsKBSKqu3obW1t6OnpqamLi8E4bCwsLECv10On00GpVO717jAYOw470zMODfm1OHK5vKR4OR9BENDd3c3EDuPIsra2hpmZGfh8vr3eFQZjV2ARHsahIb+1vNo4iba2NrS3t7NiZcaR5r777tvrXWAwdhV2ecs4NGg0GtjtdgC52h2FQgGFQlHwGKVSSb13aoWIp2QyWdNcLgaDwWDsP1iEh3GoyK/ZyWQyJcKGODDXMkZCkiQsLS1hZWUFcrkc0WgU7e3t6O7ubvh+MxgMBmNnYYKHcajo6upCOp1GJBIBkJv/wvM8eJ6HRqOBXq9HIBCAXq/fdKgox3EwGAxwOp1IJpNQKpWsuJPBYDAOKCylxThUGAwGdHV1obm5GSqVijqEkknDKysrWF9fL+jmqobRaIRCoWCdLAwGg3HAYYKHcajgOA4WiwVarRYcx8FsNsNsNiMajSIcDgPIpbUmJiY2naDOYDAYjMMDS2kxDh0cx6GtrQ02mw0LCwvweDwlbsterxd+vx8OhwMGgwFms5kNEGUwGIxDDBM8jEOLIAgYGBhAd3c3NjY2EIvFsLa2hkQiAblcjvb2dkiShEgkgqampr3eXQaDwWDsIEzwMA49CoUCTqcTANDT04NMJgOO45gPD4PBYBwhmOBhHDnkcnbYMxgMxlGDFS0zGAwGg8E49DDBw2AwGAwG49DDBA+DwWAwGIxDDxM8DAaDwWAwDj1M8DAYDAaDwTj0MMHDYDAYDAbj0MMED4PBYDAYjEMPEzwMBoPBYDAOPUzwMBh1kM1m93oXGAwGg7EFmOUsg1EFSZKQTqexsbEBl8uFbDaLY8eOwWAw7PWuMRgMBqMOmOBhMIqIx+NIJpOIRqPgeR6CIEAmk2FoaAh6vR4cx+31LjIYDAajTpjgYTDuEA6HMTU1hVAohJMnT6K1tXWvd4nBYBwiMpkMZDIZu2jaI5jgYRx5YrEYVlZW4PF46CR1QRD2ercYRxxRFBGNRhGLxZBMJiFJEhQKBQRBgMlkgkwm2+td3BOy2SwWFxfh9/thNpvR0tJS0+9VFEWk02kkk0nE43GYzWYolcpd2OO7TE1NQRAE9PT07OrrMnIwwcM4siSTSczP///t3WtTGlm3B/B/N90N3Q0IBm/gY5IyUzVJVZKZOB/ifPSZqpyZqSSVm5MbhhjQNJe+0PRtnxc5vR/NqFGjovj/VflCQGgR6cXaa6/1Htvb2wAAXddx+/ZtlEolTlSnqYmiCK9fv4bjOMiy7MDbWJaFX3755cJP2Kfhui4+fPiAu3fv/lCQlmUZtra20Ol0EEURAGA0GmFrawsrKyv4z3/+g1KptO/2k8kEQRDgy5cv6Ha7+zYdqKqK1dVVzM3NAcChQWSapuh2uxiPx9B1Xb4/hGEoMzbFYhG6rsul8PF4jDRNIYSAEAJRFCGKIsRxDEVRYNs2FhYWoKpf9w0JIZBlmfyZ/DJFUaCqKgqFgrwtnZ6SP7kH+e2338Tjx48v8HCILsZkMsHjx48RxzEAYHV1Fbdu3WKgQxcuSRJ0u10Z4IxGo2PtBlQUBQsLC6jX6zLrs/ekKISA53kwTfPcXtdCCIxGIwwGAwghUCgUMJlMZEZKCAHHcSCEQLFYRLVaRbFYlNkWTdNQKBSQJAmyLINlWTBNE2EYyg0DcRzDMAzs7u4iDMMjn4+9y0X5//ZxqaqKcrmMcrkMXdcBfH2f2N3dRZIkp3+SjjheVVWPvfPTtm38+uuvfI/6DkVR/lcI8dtB1/GZo2tJ13X5Scq2bayvr3Ndnc7dZDJBv9+H4zjo9/tQFEWe7E9KCIFer4derwfg62u60WjANE0kSYIvX77A930AQLFYRKlUQrFYhGEYUFUV9Xod9Xr9VI/reR6GwyF6vR5Go9Gxfm4ymWBnZ+fEj3eS4/qRwCQPNo/7+/woIcSJ2lz4vo9nz56h0WigWq2iXC4z63NCDHjoWoiiCIqiyE9uo9FIvjn6vo8nT56g1WqhXq9f29oI+j4hBNrtNnzfx40bN7C0tHTobZMkkcFNEAQIguDEWYeTiONYLs9+K8+67NXpdLCxsQHLso79GMPhEC9fvsR4PP6hY6XTGQwGGAwGAL5mpEzThGmaMpi1LEsuc+7s7MCyLCwsLPA97f8x4KGZ9+rVK2xvb8MwDDx69AhRFOHJkyf7btPv99Hv96FpGu7cuYPl5eUpHS1dRnkBcbvdllmKXq+H9+/fwzRNZFmGlZUVNBoNRFGEN2/eYHd3d8pHfbQ0TREEwZEBT541GY/H8DwPb968YfPNSyJ/TeZZvMNsbm5ifn4elUpFFr1blrWv3um6YMBDM89xHABfszxPnz7F7du3D11CSJIEr169QqVSgW3bF3mY9I0oitDr9eC6LmzbRpIkaLVackdOEATo9XoYj8dQVRXLy8sYDAbwPA9xHMsTc6FQgGEY0HUdlmWh2WweunwphMBkMkEYhrLY1XVdWST7rfF4LLMdg8EAiqLgqLrIy6BQKODmzZtYXFw88KQXBAFevHiBIAiQZdml/33oaGmaYmdnZ99yoqIoaDabqFaraDQa1yYDxICHZlq+OyLn+z4cx0Gr1UKn0znwZ4QQ+Ouvv/DgwQN2VD4h13UhhDh2g8Z8B0sYhgjDEL7vYzQayeaP3/r06ROazSaiKMLOzs6+bMNhyznf+vjxI0zTRBAE+3bSAPjhE/xVCA7yGpxKpbIv4MkLjDc3N48sDqarTwiBTqeDTqcDTdNkMTnw3+LvnKZpsgasUqlc6eCIAQ+dShRFSNMUxWLxUhXOeZ6Hra0t9Pt9uQX025PQaDTCxsYGgiBAv98/8H6SJMH29jYDnkM4joN2u400TWHbNhYXFxFFEV6+fAkAqNfrcqknD17yv8f8/Dwsy4LjOPA870QFu0mSoN1u/9Cx783KXEdZlqFUKqFWq+277MWLF+daVEyXU5IkMgv+PYqiwLIsVKtVrK2twTTNcz66s8WAh05lZ2cH3W4XYRjCMAxomgZd16HrOpIkwdraGsrl8nfvJ+81cVby+5qfn0epVMJ4PJa1ObZtwzRNLCwsyH/cwwIe4OtJPUkSbgPdIwxDdDodfPz4UQaSruvi8+fP+26X10QdJN9VRNMzGAzw7t07aJqGKIrQ7/e/WwtCJISA7/tXIpN5EL6TXyH5i2ya26f/+ecf+L4v6yI0TYOmabAsC/V6HdVq9cDjy7IMURRB13WZEnVdFy9evMDy8jKq1SoMw0Acx7AsS+6m+lZeRHnY9bZt4+7du/suS9MUcRwjiiJMJhM4joM3b97I3Q6HmUwm6Ha713rERL7E5LouhsMhT4oz4iK3X9NsqVQqePDgwaHvwZcZA54rQgiB3d1dBEGAUqkE27ZhWRZUVUW/30e73UahUJDbE2u1GiqVyr/uJ01TDAaDU7emX15ext9//31gv4v379/L5QpFUWSAsbceQ1EUlEolGYQIIfD27dt991MoFDA3NwdVVeX6sWVZ0DQNW1tbGI1GqNVqsjtppVLB8vIyisUi4jiG53kYjUYYDocYj8fn0jTsOsh3txHR9aZpGmq1GkzTxM2bN69s1pudli+YEAJBEMDzPARBAEVRYBiGzIBomoZSqSRrT/J25IVCAbquy4xKfrJXFEVmVNI0RZIkUFUVw+EQrutiMpnAMAyUSiXZ9jxfw7937x50XYfv+5ibmzt2xB7HsayDePv27YHFpVeVoigol8soFotYWVnBjRs3pn1IUxOGIZ4+fcqsDtE1pCgKVldXUS6XMT8/f2UyOuy0fI7yk79pmtB1HWmawvd9uK4rd4AkSYI4juUgwIvuYxFFETzP23dZGIb4888/5feKosA0TRiGIYvSFEVBmqYIwxCTyUS2QjcMQ1btr6+v4/nz5xf6+5yXarWK9fV1OVvnusmD8cFggG63yyUPomuq0Wjg1q1bx6rDvEoY8PyAJEnw+++/I01TFAoFFAqFQ/t1XHb5yS4/4X369Gnah3RuisWiXBIslUowTRNzc3NXNk17GvnuKd/34XkeXNeF67pc/iO6xhRFwcOHD/ft4Jsl1+cd/gwFQSBHExiGISfjsgPpdOS7wwDIycL5kmCWZVBVFaqqYmVlBfPz8zMf2OTLpXlmbjKZIIoiObsnH8hIRLTX0tLSzAY7wDUPeJ4/fw7TNGFZFpIkQZIkiKIIWZah2WzCMAwkSSJrX1zXxWg0YlOuS0bTNDQaDRSLRZTLZVQqlUvVG+i85UMPh8Mhdnd34brutA+JiK4g3/cRRZGcxzVrZj7gOarPi23bePfu3YHXcXfK1RGGIXZ2dpBlGZIkQa1Ww88//3xpiux835dF3lEUyV1ntVrtxIFZEARwXRdBEMj79DzvyvbFIKLLw3VdPHv2DPfu3UOxWJxqC5TzMNMBTxiGcgu1ruuoVCpYXFzEjRs3oCiKnCfjOA6+fPly7G6TdHncuXMHzWbzUmZ0kiTBu3fvDh1hoWka1tfXsbKycqz7cxznX0NPiYjO0mg0wh9//CE3sPz0009HDpi9SmY64CmVStjY2ECn04HjOHAcB6PRCJ7n4datWwAA0zTRarXQarUwHo/l0MF8Z1Ucx8iyDFmWIU1TeJ534nb4dH76/T6KxSIajca5fBo5bSdo13Xx/PnzI0cYJEmCzc1NLC4uHqsnkmEYmJ+fl9/n3a01TZN1SvmwTSKi46jX61hdXYWqqlAUBcVi8dKNDDor7MNzCnl77e3t7UM/vdPFWlpawsLCAmzblt2cjzu8cjwey35GedFz3stoc3MThUIB9+/fP3KJbDAYyCWm0Wj03S7OAGBZFiqVCu7cuXNmy2/j8RivX78+cmQGERHwtWvyo0ePZmrpin14TiGvB9F1fd+LIY7jfQWidDl0u110u135ff5JxbIs2Vconwi89++pKAqSJJGZkTzoyS8HcOSoC+Dra8VxHAwGA5kRNAxDNpXc27eoVCrBsiyYpnniTtd7J4vHcSwL7fNMZN4TKgiCEz57RHTdlMtl3L9/f6aCne9hhgdflxZ838dwOMTnz58xmUzkFnNVVeXE7CAIrmyfHfqqUCjAtm2USiXZtTofX7H36yzSuXnQnP+PCSFQKBSgadq/3mTiOIbjOLIXTv4zWZb9a2s5EdFZMAwDzWYTa2trM7OEdVSGhwHPN4QQCMNQ1mDQ9ZNPUrdtG+VyGbZtH9qYMH+9eJ6HMAzlV94H57D/r3xUSB5g9ft99sYhoqkoFotYWlqSA6BPM2fxsuCS1gnkIxZ6vd60D4WmJK/R8n1fvg40TcPa2hqWlpZk8Xt+m9M0nMwbVbKnExFN22QyQbvdRrvdlvMEq9UqKpUKbNuGaZoz0bD1Sv4GQggIIc4tBZckCQaDAcrlMuI45lICIUkSvH379l+T3YmIZokQQo6a2UvXdTSbTbRaLbkz9KqZesAjhECn00EQBLBtG4ZhYDAYYDKZoF6vo1KpoN/vw3EcRFEkCzWFECiVSqjVapibm0O1WoVpmmfyR9A0DQ8fPpTfp2mKbrcLz/P2FYnmw0H31mjkdRtERESzIo5jfPjwAR8+fADw32X5Wq2Ger0uJxXkCYJ8TmH+dRkawU69hqfT6WBzc/PM7q9QKMidMXufcMMw9hWp5um5NE3lHymOY7ktOf9SVXXf7b+VZRmiKJJFpY7jsEszERHRHpVKBRsbG+f+OJe6huesl4rSNJX9UIbD4ZG3zQdMHoemaXJbsRBC7pxhoSkREdHRLsNw7akHPNN0kmArSRLZZZmIiIiulqtXdURERER0Qgx4iIiIaOYx4CEiIqKZx4CHiIiIZt7Ui5bL5TJarda0D4OIiIjOiWEY0z6E6Qc8tVoNtVpt2odBREREM4xLWkRERDTzGPAQERHRzGPAQ0RERDOPAQ8RERHNPAY8RERENPMY8BAREdHMY8BDREREM48BDxEREc08BjxEREQ08xjwEBER0cxjwENEREQzTxFCHH6lojy+wGMhIiIi+hG7Qoj/OeiKIwMeIiIiolnAJS0iIiKaeQx4iIiIaOYx4CEiIqKZx4CHiIiIZh4DHiIiIpp5/wcN1ncPlIMZ9AAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "