-
Notifications
You must be signed in to change notification settings - Fork 443
/
trial.py
109 lines (92 loc) · 3.76 KB
/
trial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Copyright 2021 The Kubeflow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from pkg.apis.manager.v1beta1.python import api_pb2 as api
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
class Trial(object):
def __init__(self, name, assignments, target_metric, metric_name, additional_metrics):
self.name = name
self.assignments = assignments
self.target_metric = target_metric
self.metric_name = metric_name
self.additional_metrics = additional_metrics
@staticmethod
def convert(trials):
res = []
for trial in trials:
if trial.status.condition == api.TrialStatus.TrialConditionType.SUCCEEDED:
new_trial = Trial.convertTrial(trial)
if new_trial is not None:
res.append(Trial.convertTrial(trial))
return res
@staticmethod
def convertTrial(trial):
assignments = []
for assignment in trial.spec.parameter_assignments.assignments:
assignments.append(Assignment.convert(assignment))
metric_name = trial.spec.objective.objective_metric_name
target_metric, additional_metrics = Metric.convert(
trial.status.observation, metric_name)
# If the target_metric is none, ignore the trial.
if target_metric is not None:
trial = Trial(trial.name, assignments, target_metric,
metric_name, additional_metrics)
return trial
return None
def __str__(self):
if self.name is None:
return "Trial(assignment: {})".format(", ".join([str(e) for e in self.assignments]))
else:
return "Trial(assignment: {}, metric_name: {}, metric: {}, additional_metrics: {})".format(
", ".join([str(e) for e in self.assignments]),
self.metric_name, self.target_metric,
", ".join(str(e) for e in self.additional_metrics))
class Assignment(object):
def __init__(self, name, value):
self.name = name
self.value = value
@staticmethod
def convert(assignment):
return Assignment(assignment.name, assignment.value)
@staticmethod
def generate(list_of_assignments):
res = []
for assignments in list_of_assignments:
buf = []
for assignment in assignments:
buf.append(
api.ParameterAssignment(name=assignment.name, value=str(assignment.value)))
rt = api.GetSuggestionsReply.ParameterAssignments(
assignments=buf)
res.append(rt)
return res
def __str__(self):
return "Assignment(name={}, value={})".format(self.name, self.value)
class Metric(object):
def __init__(self, name, value):
self.name = name
self.value = value
@staticmethod
def convert(observation, target):
metric = None
additional_metrics = []
for m in observation.metrics:
if m.name == target:
metric = Metric(m.name, m.value)
else:
additional_metrics.append(Metric(m.name, m.value))
return metric, additional_metrics
def __str__(self):
return "Metric(name={}, value={})".format(self.name, self.value)