forked from microsoft/QuantumKatas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReferenceImplementation.qs
516 lines (441 loc) · 20.8 KB
/
ReferenceImplementation.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT license.
//////////////////////////////////////////////////////////////////////
// This file contains reference solutions to all tasks.
// The tasks themselves can be found in Tasks.qs file.
// We recommend that you try to solve the tasks yourself first,
// but feel free to look up the solution if you get stuck.
//////////////////////////////////////////////////////////////////////
namespace Quantum.Kata.Superposition {
open Microsoft.Quantum.Diagnostics;
open Microsoft.Quantum.Arrays;
open Microsoft.Quantum.Measurement;
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Convert;
open Microsoft.Quantum.Math;
//////////////////////////////////////////////////////////////////
// Part I. Simple Gates
//////////////////////////////////////////////////////////////////
// Task 1.1. Plus state
// Input: a qubit in the |0⟩ state.
// Goal: prepare a |+⟩ state on this qubit (|+⟩ = (|0⟩ + |1⟩) / sqrt(2)).
operation PlusState_Reference (q : Qubit) : Unit is Adj {
H(q);
}
// ------------------------------------------------------
// Task 1.2. Minus state
// Input: a qubit in the |0⟩ state.
// Goal: prepare a |-⟩ state on this qubit (|-⟩ = (|0⟩ - |1⟩) / sqrt(2)).
operation MinusState_Reference (q : Qubit) : Unit is Adj {
X(q);
H(q);
}
// ------------------------------------------------------
// Task 1.3. Superposition of all basis vectors on two qubits
operation AllBasisVectors_TwoQubits_Reference (qs : Qubit[]) : Unit is Adj {
// Since a Hadamard gate will change |0⟩ into |+⟩ = (|0⟩ + |1⟩)/sqrt(2)
// And the desired state is just a tensor product |+⟩|+⟩, we can apply
// a Hadamard transformation to each qubit.
H(qs[0]);
H(qs[1]);
}
// ------------------------------------------------------
// Task 1.4. Superposition of basis vectors with phase flip
operation AllBasisVectorWithPhaseFlip_TwoQubits_Reference (qs : Qubit[]) : Unit is Adj {
// We create the same state as the previous task.
AllBasisVectors_TwoQubits_Reference(qs);
// Lastly, we use a controlled Z gate to phase flip the |11⟩ state.
Controlled Z ([qs[0]],qs[1]);
}
// ------------------------------------------------------
// Task 1.5. Superposition of basis vectors with phases
operation AllBasisVectorsWithPhases_TwoQubits_Reference (qs : Qubit[]) : Unit is Adj {
// Question:
// Is this state separable?
// Answer:
// Yes. It is. We can see that:
// ((|0⟩ - |1⟩) / sqrt(2)) ⊗ ((|0⟩ + i*|1⟩) / sqrt(2)) is equal to the desired
// state, so we can create it by doing operations on each qubit independently.
// We can see that the first qubit is in state |-⟩ and the second in state |i⟩,
// so the transformations that we need are:
// Qubit 0 is taken into |+⟩ and then z-rotated into |-⟩.
H(qs[0]);
Z(qs[0]);
// Qubit 1 is taken into |+⟩ and then z-rotated into |i⟩.
H(qs[1]);
S(qs[1]);
}
// ------------------------------------------------------
// Task 1.6. Bell state
// Input: two qubits in |00⟩ state (stored in an array of length 2).
// Goal: create a Bell state |Φ⁺⟩ = (|00⟩ + |11⟩) / sqrt(2) on these qubits.
operation BellState_Reference (qs : Qubit[]) : Unit is Adj {
H(qs[0]);
CNOT(qs[0], qs[1]);
}
// ------------------------------------------------------
// Task 1.7. All Bell states
// Inputs:
// 1) two qubits in |00⟩ state (stored in an array of length 2)
// 2) an integer index
// Goal: create one of the Bell states based on the value of index:
// 0: |Φ⁺⟩ = (|00⟩ + |11⟩) / sqrt(2)
// 1: |Φ⁻⟩ = (|00⟩ - |11⟩) / sqrt(2)
// 2: |Ψ⁺⟩ = (|01⟩ + |10⟩) / sqrt(2)
// 3: |Ψ⁻⟩ = (|01⟩ - |10⟩) / sqrt(2)
operation AllBellStates_Reference (qs : Qubit[], index : Int) : Unit is Adj {
H(qs[0]);
CNOT(qs[0], qs[1]);
// now we have |00⟩ + |11⟩ - modify it based on index arg
if index % 2 == 1 {
// negative phase
Z(qs[1]);
}
if index / 2 == 1 {
X(qs[1]);
}
}
// ------------------------------------------------------
// Task 1.8. Greenberger–Horne–Zeilinger state
// Input: N qubits in |0...0⟩ state.
// Goal: create a GHZ state (|0...0⟩ + |1...1⟩) / sqrt(2) on these qubits.
operation GHZ_State_Reference (qs : Qubit[]) : Unit is Adj {
H(Head(qs));
for q in Rest(qs) {
CNOT(Head(qs), q);
}
}
// ------------------------------------------------------
// Task 1.9. Superposition of all basis vectors
// Input: N qubits in |0...0⟩ state.
// Goal: create an equal superposition of all basis vectors from |0...0⟩ to |1...1⟩
// (i.e. state (|0...0⟩ + ... + |1...1⟩) / sqrt(2^N) ).
operation AllBasisVectorsSuperposition_Reference (qs : Qubit[]) : Unit is Adj {
for q in qs {
H(q);
}
}
// ------------------------------------------------------
// Task 1.10. Superposition of all even or all odd numbers
// Inputs:
// 1) N qubits in |0...0⟩ state.
// 2) A boolean isEven.
// Goal: create a superposition of all even numbers on N qubits if isEven is true,
// or a superposition of all odd numbers on N qubits if isEven is false.
operation EvenOddNumbersSuperposition_Reference (qs : Qubit[], isEven : Bool) : Unit is Adj {
for q in Most(qs) {
H(q);
}
// for odd numbers, flip the last bit to 1
if not isEven {
X(Tail(qs));
}
}
// ------------------------------------------------------
// Task 1.11. Superposition of |0...0⟩ and given bit string
// Inputs:
// 1) N qubits in |0...0⟩ state
// 2) bit string represented as Bool[]
// Goal: create an equal superposition of |0...0⟩ and basis state given by the second bit string.
// Bit values false and true correspond to |0⟩ and |1⟩ states.
// You are guaranteed that the qubit array and the bit string have the same length.
// You are guaranteed that the first bit of the bit string is true.
// Example: for bit string = [true, false] the qubit state required is (|00⟩ + |10⟩) / sqrt(2).
operation ZeroAndBitstringSuperposition_Reference (qs : Qubit[], bits : Bool[]) : Unit is Adj {
Fact(Length(bits) == Length(qs), "Arrays should have the same length");
Fact(Head(bits), "First bit of the input bit string should be set to true");
// Hadamard first qubit
H(Head(qs));
// iterate through the bit string and CNOT to qubits corresponding to true bits
for i in 1 .. Length(qs) - 1 {
if bits[i] {
CNOT(Head(qs), qs[i]);
}
}
}
// ------------------------------------------------------
// Task 1.12. Superposition of two bit strings
// Inputs:
// 1) N qubits in |0...0⟩ state
// 2) two bit string represented as Bool[]s
// Goal: create an equal superposition of two basis states given by the bit strings.
// Bit values false and true correspond to |0⟩ and |1⟩ states.
// Example: for bit strings [false, true, false] and [false, false, true]
// the qubit state required is (|010⟩ + |001⟩) / sqrt(2).
// You are guaranteed that the two bit strings will be different.
// helper function for TwoBitstringSuperposition_Reference
function FindFirstDiff_Reference (bits1 : Bool[], bits2 : Bool[]) : Int {
for i in 0 .. Length(bits1) - 1 {
if bits1[i] != bits2[i] {
return i;
}
}
return -1;
}
operation TwoBitstringSuperposition_Reference (qs : Qubit[], bits1 : Bool[], bits2 : Bool[]) : Unit is Adj {
// find the index of the first bit at which the bit strings are different
let firstDiff = FindFirstDiff_Reference(bits1, bits2);
// Hadamard corresponding qubit to create superposition
H(qs[firstDiff]);
// iterate through the bit strings again setting the final state of qubits
for i in 0 .. Length(qs) - 1 {
if bits1[i] == bits2[i] {
// if two bits are the same apply X or nothing
if bits1[i] {
X(qs[i]);
}
} else {
// if two bits are different, set their difference using CNOT
if i > firstDiff {
CNOT(qs[firstDiff], qs[i]);
if bits1[i] != bits1[firstDiff] {
X(qs[i]);
}
}
}
}
}
// ------------------------------------------------------
// Task 1.13*. Superposition of four bit strings
// Inputs:
// 1) N qubits in |0...0⟩ state
// 2) four bit string represented as Bool[][] bits
// bits is an array of size 4 x N which describes the bit strings as follows:
// bits[i] describes the i-th bit string and has N elements;
// bit values false and true correspond to |0⟩ and |1⟩ states.
//
// Goal: create an equal superposition of the four basis states given by the bit strings.
operation FourBitstringSuperposition_Reference (qs : Qubit[], bits : Bool[][]) : Unit is Adj {
use anc = Qubit[2];
// Put two ancillas into equal superposition of 2-qubit basis states
ApplyToEachA(H, anc);
// Set up the right pattern on the main qubits with control on ancillas
for i in 0 .. 3 {
for j in 0 .. Length(qs) - 1 {
if bits[i][j] {
(ControlledOnInt(i, X))(anc, qs[j]);
}
}
}
// Uncompute the ancillas, using patterns on main qubits as control
for i in 0 .. 3 {
if i % 2 == 1 {
(ControlledOnBitString(bits[i], X))(qs, anc[0]);
}
if i / 2 == 1 {
(ControlledOnBitString(bits[i], X))(qs, anc[1]);
}
}
}
// ------------------------------------------------------
// Task 1.14. Superposition of all bit strings of the given parity
// Inputs:
// 1) N qubits in |0..0⟩ state (stored in an array of length N).
// 2) An int "parity".
// Goal: change the state to an equal superposition of all basis states that have
// an even number of 1s in them if "parity" = 0, or
// an odd number of 1s in them if "parity" = 1.
operation AllStatesWithParitySuperposition_Reference (qs : Qubit[], parity : Int) : Unit is Adj + Ctl {
// base of recursion: if N = 1, set the qubit to parity
let N = Length(qs);
if N == 1 {
if parity == 1 {
X(qs[0]);
}
} else {
// split the first qubit into 0 and 1 (with equal amplitudes!)
H(qs[0]);
// prep 0 ⊗ state with the same parity and 1 ⊗ state with the opposite parity
(ControlledOnInt(0, AllStatesWithParitySuperposition_Reference))(qs[0 .. 0], (qs[1 ...], parity));
(ControlledOnInt(1, AllStatesWithParitySuperposition_Reference))(qs[0 .. 0], (qs[1 ...], 1 - parity));
}
}
// Alternative solution, based on post-selection
operation AllStatesWithParitySuperposition_Postselection (qs : Qubit[], parity : Int) : Unit {
use anc = Qubit();
// Create equal superposition of all basis states
ApplyToEach(H, qs);
// Calculate the parity of states using CNOTs
ApplyToEach(CNOT(_, anc), qs);
let res = MResetZ(anc);
// Now, if we got measurement result that matches parity, we're good;
// otherwise we can apply X to any one qubit to get our result!
if (res == Zero ? 0 | 1) != parity {
X(qs[0]);
}
}
//////////////////////////////////////////////////////////////////
// Part II. Arbitrary Rotations
//////////////////////////////////////////////////////////////////
// Task 2.1. Unequal superposition
// Inputs:
// 1) a qubit in the |0⟩ state.
// 2) angle alpha, in radians, represented as Double
// Goal: prepare a cos(alpha) * |0⟩ + sin(alpha) * |1⟩ state on this qubit.
operation UnequalSuperposition_Reference (q : Qubit, alpha : Double) : Unit is Adj {
// Hint: Experiment with rotation gates from Microsoft.Quantum.Intrinsic
Ry(2.0 * alpha, q);
}
// ------------------------------------------------------
// Task 2.2. 1/sqrt(2)|00⟩ + 1/2|01⟩ + 1/2|10⟩ state
// Input: two qubits in |00⟩ state (stored in an array of length 2).
// Goal: change the state to 1/sqrt(2)|00⟩+1/2|10⟩+1/2|11⟩.
operation ControlledRotation_Reference (qs : Qubit[]) : Unit is Adj {
H(qs[0]);
Controlled H ([qs[0]],qs[1]);
}
// ------------------------------------------------------
// Task 2.3*. |00⟩ + |01⟩ + |10⟩ state
// Input: 2 qubits in |00⟩ state.
// Goal: create the state (|00⟩ + |01⟩ + |10⟩) / sqrt(3) on these qubits.
operation ThreeStates_TwoQubits_Reference (qs : Qubit[]) : Unit is Adj {
// Follow Niel's answer at https://quantumcomputing.stackexchange.com/a/2313/
// Rotate first qubit to (sqrt(2) |0⟩ + |1⟩) / sqrt(3) (task 1.4 from BasicGates kata)
let theta = ArcSin(1.0 / Sqrt(3.0));
Ry(2.0 * theta, qs[0]);
// Split the state sqrt(2) |0⟩ ⊗ |0⟩ into |00⟩ + |01⟩
(ControlledOnInt(0, H))([qs[0]], qs[1]);
}
// Alternative solution, based on post-selection
operation ThreeStates_TwoQubits_Postselection (qs : Qubit[]) : Unit {
use ancilla = Qubit();
repeat {
// Create |00⟩ + |01⟩ + |10⟩ + |11⟩ state
ApplyToEach(H, qs);
// Create (|00⟩ + |01⟩ + |10⟩) ⊗ |0⟩ + |11⟩ ⊗ |1⟩
Controlled X(qs, ancilla);
let res = MResetZ(ancilla);
}
until (res == Zero)
fixup {
ResetAll(qs);
}
}
// ------------------------------------------------------
// Task 2.4*. (|00⟩ + ω |01⟩ + ω² |10⟩) / sqrt(3)
// Input: two qubits in |00⟩ state (stored in an array of length 2).
// Goal: change the state to (|00⟩ + ω |01⟩ + ω² |10⟩) / sqrt(3).
operation ThreeStates_TwoQubits_Phases_Reference (qs : Qubit[]) : Unit is Adj {
// First create (|00⟩ + |01⟩ + |10⟩) / sqrt(3) state
ThreeStates_TwoQubits_Reference(qs);
R1(4.0 * PI() / 3.0, qs[0]);
R1(2.0 * PI() / 3.0, qs[1]);
}
// ------------------------------------------------------
// Task 2.5*. Hardy State
// Input: 2 qubits in |00⟩ state
// Goal: create the state (3|00⟩ + |01⟩ + |10⟩ + |11⟩) / sqrt(12) on these qubits.
operation Hardy_State_Reference (qs : Qubit[]) : Unit is Adj {
// Follow Mariia's answer at https://quantumcomputing.stackexchange.com/questions/6836/how-to-create-quantum-circuits-from-scratch
// Rotate first qubit to (Sqrt(10.0/12.0) |0⟩ + Sqrt(2.0/12.0) |1⟩)
let theta = ArcCos(Sqrt(10.0/12.0));
Ry(2.0 * theta, qs[0]);
(ControlledOnInt(0, Ry))([qs[0]], (2.0 * ArcCos(3.0/Sqrt(10.0)) , qs[1]));
(ControlledOnInt(1, Ry))([qs[0]], (2.0 * PI()/4.0 , qs[1]));
}
// ------------------------------------------------------
// Task 2.6*. W state on 2ᵏ qubits
// Input: N = 2ᵏ qubits in |0...0⟩ state.
// Goal: create a W state (https://en.wikipedia.org/wiki/W_state) on these qubits.
// W state is an equal superposition of all basis states on N qubits of Hamming weight 1.
// Example: for N = 4, W state is (|1000⟩ + |0100⟩ + |0010⟩ + |0001⟩) / 2.
operation WState_PowerOfTwo_Reference (qs : Qubit[]) : Unit is Adj {
let N = Length(qs);
if N ==1 {
// base of recursion: |1⟩
X(qs[0]);
} else {
let K = N / 2;
// create W state on the first K qubits
WState_PowerOfTwo_Reference(qs[0 .. K - 1]);
// the next K qubits are in |0...0⟩ state
// allocate ancilla in |+⟩ state
use anc = Qubit();
H(anc);
for i in 0 .. K - 1 {
Controlled SWAP([anc], (qs[i], qs[i + K]));
}
for i in K .. N - 1 {
CNOT(qs[i], anc);
}
}
}
// ------------------------------------------------------
// Task 2.7**. W state on arbitrary number of qubits
// Input: N qubits in |0...0⟩ state (N is not necessarily a power of 2).
// Goal: create a W state (https://en.wikipedia.org/wiki/W_state) on these qubits.
// W state is an equal superposition of all basis states on N qubits of Hamming weight 1.
// Example: for N = 3, W state is (|100⟩ + |010⟩ + |001⟩) / sqrt(3).
// general solution based on rotations and recursive application of controlled generation routine
operation WState_Arbitrary_Reference (qs : Qubit[]) : Unit is Adj + Ctl {
let N = Length(qs);
if N ==1 {
// base case of recursion: |1⟩
X(qs[0]);
} else {
// |W_N⟩ = |0⟩|W_(N-1)⟩ + |1⟩|0...0⟩
// do a rotation on the first qubit to split it into |0⟩ and |1⟩ with proper weights
// |0⟩ -> sqrt((N-1)/N) |0⟩ + 1/sqrt(N) |1⟩
let theta = ArcSin(1.0 / Sqrt(IntAsDouble(N)));
Ry(2.0 * theta, qs[0]);
// do a zero-controlled W-state generation for qubits 1..N-1
X(qs[0]);
Controlled WState_Arbitrary_Reference(qs[0 .. 0], qs[1 .. N - 1]);
X(qs[0]);
}
}
// Iterative solution (equivalent to the WState_Arbitrary_Reference, but with the recursion unrolled)
// Circuit for N=4: https://algassert.com/quirk#circuit={%22cols%22:[[1,1,1,%22~95cq%22],[1,1,%22~erlf%22,%22%E2%97%A6%22],[1,%22~809j%22,%22%E2%97%A6%22,%22%E2%97%A6%22],[%22X%22,%22%E2%97%A6%22,%22%E2%97%A6%22,%22%E2%97%A6%22]],%22gates%22:[{%22id%22:%22~809j%22,%22name%22:%22FS_2%22,%22matrix%22:%22{{%E2%88%9A%C2%BD,-%E2%88%9A%C2%BD},{%E2%88%9A%C2%BD,%E2%88%9A%C2%BD}}%22},{%22id%22:%22~erlf%22,%22name%22:%22FS_3%22,%22matrix%22:%22{{%E2%88%9A%E2%85%94,-%E2%88%9A%E2%85%93},{%E2%88%9A%E2%85%93,%E2%88%9A%E2%85%94}}%22},{%22id%22:%22~95cq%22,%22name%22:%22FS_4%22,%22matrix%22:%22{{%E2%88%9A%C2%BE,-%C2%BD},{%C2%BD,%E2%88%9A%C2%BE}}%22}]}
operation WState_Arbitrary_Iterative (qs : Qubit[]) : Unit is Adj {
let N = Length(qs);
FractionSuperposition(N, qs[0]);
for i in 1 .. N - 1 {
(ControlledOnInt(0, FractionSuperposition))(qs[0..i-1], (N-i, qs[i]));
}
}
// Given a qubit in |0⟩ state and a denominator N,
// transform the qubit to state sqrt((N-1) / N) |0⟩ + sqrt(1/N) |1⟩.
operation FractionSuperposition(denominator : Int, q : Qubit) : Unit is Adj + Ctl {
if denominator == 1 {
X(q);
} else {
// represent the target state as cos(theta) * |0⟩ + sin(theta) * |1⟩, as in task 1.3
let denom = IntAsDouble(denominator);
let num = denom - 1.0;
let theta = ArcCos(Sqrt(num / denom));
Ry(2.0 * theta, q);
}
}
// solution based on generation for 2ᵏ and post-selection using measurements
operation WState_Arbitrary_Postselect (qs : Qubit[]) : Unit {
let N = Length(qs);
if N ==1 {
// base case of recursion: |1⟩
X(qs[0]);
} else {
// find the smallest power of 2 which is greater than or equal to N
// as a hack, we know we're not doing it on more than 64 qubits
mutable P = 1;
for i in 1 .. 6 {
if P < N {
set P *= 2;
}
}
// allocate extra qubits (might be 0 qubits if N is a power of 2)
use anc = Qubit[P - N];
repeat {
// prepare state W_P on original + ancilla qubits
WState_PowerOfTwo(qs + anc);
// measure extra qubits; if all of the results are Zero, we got the right state on main qubits
mutable allZeros = true;
for i in 0 .. (P - N) - 1 {
if MResetZ(anc[i]) == One {
set allZeros = false;
}
}
}
until (allZeros);
}
}
}