forked from harvardnlp/data2text
-
Notifications
You must be signed in to change notification settings - Fork 0
/
box_train.lua
601 lines (517 loc) · 22.2 KB
/
box_train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
require('onmt.init')
local path = require('pl.path')
tds = require('tds')
local cmd = torch.CmdLine()
cmd:text("")
cmd:text("**train.lua**")
cmd:text("")
cmd:option('-config', '', [[Read options from this file]])
cmd:text("")
cmd:text("**Data options**")
cmd:text("")
cmd:option('-data', '', [[Path to the training *-train.t7 file from preprocess.lua]])
cmd:option('-save_model', '', [[Model filename (the model will be saved as
<save_model>_epochN_PPL.t7 where PPL is the validation perplexity]])
cmd:option('-train_from', '', [[If training from a checkpoint then this is the path to the pretrained model.]])
cmd:option('-continue', false, [[If training from a checkpoint, whether to continue the training in the same configuration or not.]])
cmd:option('-just_eval', false, [[Evaluate ppl of a saved model]])
cmd:option('-just_gen', false, [[Generate from a saved model]])
cmd:option('-test', false, [[Use test (not validation) data]])
cmd:option('-beam_size', 5, [[Beam size used for generation]])
cmd:option('-gen_file', 'preds.txt', [[File to write generations to]])
cmd:text("")
cmd:text("**Model options**")
cmd:text("")
cmd:option('-layers', 2, [[Number of layers in the LSTM encoder/decoder]])
cmd:option('-rnn_size', 200, [[Size of LSTM hidden states]])
cmd:option('-word_vec_size', 200, [[Word embedding sizes]])
cmd:option('-feat_merge', 'concat', [[Merge action for the features embeddings: concat or sum]])
cmd:option('-input_feed', 1, [[Feed the context vector at each time step as additional input (via concatenation with the word embeddings) to the decoder.]])
cmd:option('-residual', false, [[Add residual connections between RNN layers.]])
cmd:option('-just_lm', false, [[No conditioning]])
cmd:option('-copy_generate', false, [[Use copy attn]])
cmd:option('-tanh_query', false, [[Apply tanh to attn query vector]])
cmd:option('-recdist', 0, [[Distance to use if doin continuous reconstruction]])
cmd:option('-discrec', false, [[Do discrete reconstruction]])
cmd:option('-discdist', 0, [[1 for total dev; 2 for hellinger]])
cmd:option('-recembsize', 300, [[Embedding size of entries to reconstruct]])
cmd:option('-partition_feats', false, [[Partition feats used in discrete reconstruction]])
cmd:option('-nfilters', 200, [[Convolutional filters for reconstruction]])
cmd:option('-nrecpreds', 3, [[Number of entries to reconstruct]])
cmd:option('-rho', 0.5, [[Reconstruction loss coefficient]])
cmd:option('-switch', false, [[Use switching/conditional copying]])
cmd:option('-multilabel', false, [[Marginalize over possibly correct pointer locations]])
cmd:option('-map', false, [[Select MAP word (under switching model)]])
cmd:option('-pool', 'mean', [[Table embedding pooling: mean or max]])
cmd:option('-enc_layers', 1, [[Number of encoder layers]])
cmd:option('-enc_emb_size', 200, [[Table encoder embedding size]])
cmd:option('-enc_dropout', 0, [[Rate]])
cmd:option('-enc_relu', false, [[Use ReLU nonlinearity in encoder]])
cmd:text("")
cmd:text("**Optimization options**")
cmd:text("")
cmd:option('-max_batch_size', 64, [[Maximum batch size]])
cmd:option('-epochs', 13, [[Number of training epochs]])
cmd:option('-start_epoch', 1, [[If loading from a checkpoint, the epoch from which to start]])
cmd:option('-start_iteration', 1, [[If loading from a checkpoint, the iteration from which to start]])
cmd:option('-param_init', 0.1, [[Parameters are initialized over uniform distribution with support (-param_init, param_init)]])
cmd:option('-optim', 'sgd', [[Optimization method. Possible options are: sgd, adagrad, adadelta, adam, mom]])
cmd:option('-learning_rate', 1, [[Starting learning rate. If adagrad/adadelta/adam is used,
then this is the global learning rate. Recommended settings are: sgd = 1,
adagrad = 0.1, adadelta = 1, adam = 0.0002]])
cmd:option('-mom', 0.9, [[momentum]])
cmd:option('-max_grad_norm', 5, [[If the norm of the gradient vector exceeds this renormalize it to have the norm equal to max_grad_norm]])
cmd:option('-dropout', 0.3, [[Dropout probability. Dropout is applied between vertical LSTM stacks.]])
cmd:option('-learning_rate_decay', 0.5, [[Decay learning rate by this much if (i) perplexity does not decrease
on the validation set or (ii) epoch has gone past the start_decay_at_limit]])
cmd:option('-start_decay_at', 10000, [[Start decay after this epoch]])
cmd:option('-decay_update2', false, [[Decay only when validation doesn't improve]])
cmd:option('-curriculum', 0, [[For this many epochs, order the minibatches based on source
sequence length. Sometimes setting this to 1 will increase convergence speed.]])
cmd:option('-pre_word_vecs_enc', '', [[If a valid path is specified, then this will load
pretrained word embeddings on the encoder side.
See README for specific formatting instructions.]])
cmd:option('-pre_word_vecs_dec', '', [[If a valid path is specified, then this will load
pretrained word embeddings on the decoder side.
See README for specific formatting instructions.]])
cmd:option('-fix_word_vecs_enc', false, [[Fix word embeddings on the encoder side]])
cmd:option('-fix_word_vecs_dec', false, [[Fix word embeddings on the decoder side]])
cmd:option('-max_bptt', 500, [[Maximum BPTT window size]])
cmd:text("")
cmd:text("**Other options**")
cmd:text("")
-- GPU
cmd:option('-gpuid', 0, [[1-based identifier of the GPU to use. CPU is used when the option is < 1]])
cmd:option('-nparallel', 1, [[When using GPUs, how many batches to execute in parallel.
Note: this will technically change the final batch size to max_batch_size*nparallel.]])
cmd:option('-disable_mem_optimization', false, [[Disable sharing internal of internal buffers between clones - which is in general safe,
except if you want to look inside clones for visualization purpose for instance.]])
-- bookkeeping
cmd:option('-save_every', 0, [[Save intermediate models every this many iterations within an epoch.
If = 0, will not save models within an epoch. ]])
cmd:option('-report_every', 50, [[Print stats every this many iterations within an epoch.]])
cmd:option('-seed', 3435, [[Seed for random initialization]])
cmd:option('-json_log', false, [[Outputs logs in JSON format.]])
local opt = cmd:parse(arg)
if not opt.just_gen then
print(opt)
end
local function reseed()
torch.manualSeed(opt.seed)
if opt.gpuid > 0 then
cutorch.manualSeed(opt.seed)
end
end
local function initParams(model, verbose)
local numParams = 0
local params = {}
local gradParams = {}
if verbose then
print('Initializing parameters...')
end
-- we assume all the sharing has already been done,
-- so we just make a big container to flatten everything
local everything = nn.Sequential()
for k, mod in pairs(model) do
everything:add(mod)
end
local p, gp = everything:getParameters()
if opt.train_from:len() == 0 then
p:uniform(-opt.param_init, opt.param_init)
-- do module specific init; wordembeddings will happen multiple times,
-- but who cares
for k, mod in pairs(model) do
mod:apply(function (m)
if m.postParametersInitialization then
m:postParametersInitialization()
end
end)
end
else
print("copying loaded params...")
local checkpoint = torch.load(opt.train_from)
p:copy(checkpoint.flatParams[1])
end
numParams = numParams + p:size(1)
table.insert(params, p)
table.insert(gradParams, gp)
if verbose then
print(" * number of parameters: " .. numParams)
end
return params, gradParams
end
local function buildCriterion(vocabSize, features)
local criterion = nn.ParallelCriterion(false)
local function addNllCriterion(size)
-- Ignores padding value.
local w = torch.ones(size)
w[onmt.Constants.PAD] = 0
local nll = nn.ClassNLLCriterion(w)
-- Let the training code manage loss normalization.
nll.sizeAverage = false
criterion:add(nll)
end
addNllCriterion(vocabSize)
for j = 1, #features do
addNllCriterion(features[j]:size())
end
return criterion
end
function allTraining(model)
for _, mod in pairs(model) do
if mod.training then
mod:training()
end
end
end
function allEvaluate(model)
for _, mod in pairs(model) do
if mod.evaluate then
mod:evaluate()
end
end
end
-- gets encodings for all rows
function allEncForward(model, batch)
local aggEncStates, catCtx = model.encoder:forward(batch)
if opt.just_lm then
for i = 1, #aggEncStates do
aggEncStates[i]:zero()
end
catCtx:zero()
end
return aggEncStates, catCtx
end
-- goes backward over all encoders
function allEncBackward(model, batch, encGradStatesOut, gradContext)
model.encoder:backward(batch, encGradStatesOut, gradContext)
end
local function eval(model, criterion, data)
local loss = 0
local total = 0
-- model.encoder:evaluate()
-- model.decoder:evaluate()
allEvaluate(model)
for i = 1, data:batchCount() do
model.decoder:resetLastStates()
local batch = onmt.utils.Cuda.convert(data:getBatch(i))
local aggEncStates, catCtx = allEncForward(model, batch)
--loss = loss + model.decoder:computeLoss(batch, encoderStates, context, criterion)
loss = loss + model.decoder:computeLoss(batch, aggEncStates, catCtx, criterion)
total = total + batch.targetNonZeros
end
-- model.encoder:training()
-- model.decoder:training()
allTraining(model)
return math.exp(loss / total)
end
local function convert_and_shorten_string(ts, max_len, dict)
local strtbl = {}
for i = 1, max_len do
if ts[i] == onmt.Constants.EOS then
break
end
table.insert(strtbl, dict.idxToLabel[ts[i]])
end
return stringx.join(' ', strtbl)
end
local function beamGen(model, data, tgtDict)
-- adapted from Translator:translateBatch()
local max_sent_length = 1500
print("using max len:", 1500)
allEvaluate(model)
local outFile = io.open(opt.gen_file, 'w')
for i = 1, data:batchCount() do
model.decoder:resetLastStates()
local batch = onmt.utils.Cuda.convert(data:getBatch(i))
local aggEncStates, catCtx = allEncForward(model, batch)
local advancer
if opt.switch then
advancer = onmt.translate.SwitchingDecoderAdvancer.new(model.decoder,
batch, catCtx, max_sent_length, nil, aggEncStates, nil, opt.map, opt.multilabel)
else
advancer = onmt.translate.Decoder2Advancer.new(model.decoder,
batch, catCtx, max_sent_length, nil, aggEncStates, nil)
end
local beamSearcher = onmt.translate.BeamSearcher.new(advancer)
local results = beamSearcher:search(opt.beam_size, 1, 1, false)
for b = 1, batch.size do
local top1 = results[b][1].tokens
local top1tostr = convert_and_shorten_string(top1, #top1, tgtDict)
print(top1tostr)
outFile:write(top1tostr, '\n')
end
end
outFile:close()
end
local function trainModel(model, trainData, validData, dataset, info)
local criterion
local verbose = true
local params, gradParams = initParams(model, verbose)
allTraining(model)
-- for _, mod in pairs(model) do
-- mod:training()
-- end
-- define criterion of each GPU
criterion = onmt.utils.Cuda.convert(buildCriterion(dataset.dicts.tgt.words:size(),
dataset.dicts.tgt.features))
local recCrit
if opt.discrec then
recCrit = onmt.utils.Cuda.convert(nn.KMinXent())
recCrit.sizeAverage = false
elseif opt.recdist > 0 then
recCrit = onmt.utils.Cuda.convert(nn.KMinDist(opt.recdist))
recCrit.sizeAverage = false
end
local switchCrit, ptrCrit
if opt.switch then
switchCrit = onmt.utils.Cuda.convert(nn.BCECriterion())
switchCrit.sizeAverage = false
if opt.multilabel then
ptrCrit = onmt.utils.Cuda.convert(nn.MarginalNLLCriterion())
ptrCrit.sizeAverage = false
else
ptrCrit = onmt.utils.Cuda.convert(nn.ClassNLLCriterion())
ptrCrit.sizeAverage = false
end
end
-- optimize memory of the first clone
if not opt.disable_mem_optimization then
local batch = onmt.utils.Cuda.convert(trainData:getBatch(1))
batch.totalSize = batch.size
onmt.utils.Memory.boxOptimize2(model, criterion, batch, verbose, switchCrit, ptrCrit)
end
local optim = onmt.train.Optim.new({
method = opt.optim,
numModels = 1, -- we flattened everything
learningRate = opt.learning_rate,
learningRateDecay = opt.learning_rate_decay,
startDecayAt = opt.start_decay_at,
optimStates = opt.optim_states,
mom = opt.mom
})
local checkpoint = onmt.train.Checkpoint.new(opt, model, params, optim, dataset)
local function trainEpoch(epoch, lastValidPpl)
local epochState
local batchOrder
local startI = opt.start_iteration
local numIterations = trainData:batchCount()
if startI > 1 and info ~= nil then
epochState = onmt.train.EpochState.new(epoch, numIterations, optim:getLearningRate(), lastValidPpl, info.epochStatus)
batchOrder = info.batchOrder
else
epochState = onmt.train.EpochState.new(epoch, numIterations, optim:getLearningRate(), lastValidPpl)
-- Shuffle mini batch order.
batchOrder = torch.randperm(trainData:batchCount())
end
--opt.start_iteration = 1
local iter = 1
local totalLoss2, totalLoss3 = 0, 0
model.decoder:remember()
for i = startI, trainData:batchCount() do
local batchIdx = epoch <= opt.curriculum and i or batchOrder[i]
local batch = trainData:getBatch(batchIdx)
batch.totalSize = batch.size -- fuck off
onmt.utils.Cuda.convert(batch)
local batchPieces = batch:splitIntoPieces(opt.max_bptt)
model.decoder:resetLastStates() -- don't use saved last state for new batch
for j = 1, batchPieces do
optim:zeroGrad(gradParams)
local aggEncStates, catCtx = allEncForward(model, batch)
local ctxLen = catCtx:size(2)
local decOutputs = model.decoder:forward(batch, aggEncStates, catCtx)
local encGradStatesOut, gradContext, loss, loss2, loss3 = model.decoder:backward(batch, decOutputs,
criterion, ctxLen, recCrit,
switchCrit, ptrCrit)
allEncBackward(model, batch, encGradStatesOut, gradContext)
-- Update the parameters.
optim:prepareGrad(gradParams, opt.max_grad_norm)
optim:updateParams(params, gradParams)
--epochState:update(batch, loss, recloss)
epochState:update(batch, loss, nil)
if loss2 then
totalLoss2 = totalLoss2 + loss2
end
if loss3 then
totalLoss3 = totalLoss3 + loss3
end
batch:nextPiece()
end
if iter % opt.report_every == 0 then
epochState:log(iter, opt.json_log)
if opt.switch then
print("switchLoss", totalLoss2/epochState.status.trainNonzeros)
print("ptrLoss", totalLoss3/epochState.status.trainNonzeros)
end
collectgarbage()
end
if opt.save_every > 0 and iter % opt.save_every == 0 then
checkpoint:saveIteration(iter, epochState, batchOrder, not opt.json_log)
end
iter = iter + 1
end
return epochState
end -- end local function trainEpoch
reseed()
local validPpl = 0
local bestPpl = math.huge
local bestEpoch = -1
if opt.just_gen then
beamGen(model, validData, g_tgtDict)
return
elseif opt.just_eval then
validPpl = eval(model, criterion, validData)
print('Validation perplexity: ' .. validPpl)
return
end
if not opt.json_log then
print('Start training...')
end
for epoch = opt.start_epoch, opt.epochs do
if not opt.json_log then
print('')
end
local epochState = trainEpoch(epoch, validPpl)
validPpl = eval(model, criterion, validData)
if not opt.json_log then
print('Validation perplexity: ' .. validPpl)
end
if opt.optim == 'sgd' or opt.optim == 'mom' then
if opt.decay_update2 then
optim:updateLearningRate2(validPpl, epoch)
else
optim:updateLearningRate(validPpl, epoch)
end
end
if validPpl < bestPpl then
checkpoint:deleteEpoch(bestPpl, bestEpoch)
checkpoint:saveEpoch(validPpl, epochState, not opt.json_log)
bestPpl = validPpl
bestEpoch = epoch
end
collectgarbage()
collectgarbage()
end
end -- end local function trainModel
local function main()
local requiredOptions = {
"data",
"save_model"
}
onmt.utils.Opt.init(opt, requiredOptions)
onmt.utils.Cuda.init(opt)
onmt.utils.Parallel.init(opt)
reseed()
-- Create the data loader class.
if not opt.json_log then
if not opt.just_gen then
print('Loading data from \'' .. opt.data .. '\'...')
end
end
local dataset = torch.load(opt.data, 'binary', false)
assert(dataset.dicts.src.words:size() == dataset.dicts.tgt.words:size())
-- add extra for all the column features
--Hacky Constants
g_nRegRows = #dataset.train.src.words/2 - 1 -- two teams and nRegRows players
assert(g_nRegRows == 13)
g_nCols = dataset.train.src.words[1][1]:size(1) - 1 -- leave off first b/c it's the row name
assert(g_nCols == 22)
g_specPadding = g_nCols -- assume last real column is the row name for special (i.e., team) rows
g_nFeatures = 4
if not opt.just_gen then
print("USING HACKY GLOBALS!!!",
string.format("regRows: %d; specPadding: %d; nCols: %d; nFeats: %d",
g_nRegRows, g_specPadding, g_nCols, g_nFeatures))
print("")
end
local colStartIdx = dataset.dicts.src.words:size()+1 -- N.B. order is crucial
for i = 1, g_nCols*2+2 do -- column names for reg and spec, plus home/away features
dataset.dicts.src.words:add("DOPEEXTRALABEL" .. i)
dataset.dicts.tgt.words:add("DOPEEXTRALABEL" .. i)
end
assert(dataset.dicts.src.words:size() == dataset.dicts.tgt.words:size())
g_tgtDict = dataset.dicts.tgt.words
local tripV -- vocabulary for each element in a triple (for rec)
if opt.discrec then
tripV = {dataset.dicts.src.rows:size(), dataset.dicts.src.cols:size(), dataset.dicts.src.cells:size()}
print("tripV:", tripV)
end
local trainData = onmt.data.BoxDataset2.new(dataset.train.src, dataset.train.tgt,
colStartIdx, g_nFeatures, opt.copy_generate, nil, tripV, opt.switch, opt.multilabel)
local validData
if opt.test then
print("using test data...")
validData = onmt.data.BoxDataset2.new(dataset.test.src, dataset.test.tgt,
colStartIdx, g_nFeatures, opt.copy_generate, nil, tripV)
else
validData = onmt.data.BoxDataset2.new(dataset.valid.src, dataset.valid.tgt,
colStartIdx, g_nFeatures, opt.copy_generate, nil, tripV) -- no switching on valid
end
trainData:setBatchSize(opt.max_batch_size)
validData:setBatchSize(opt.max_batch_size)
if not opt.json_log then
if not opt.just_gen then
print(string.format(' * vocabulary size: source = %d; target = %d',
dataset.dicts.src.words:size(), dataset.dicts.tgt.words:size()))
print(string.format(' * additional features: source = %d; target = %d',
#dataset.dicts.src.features, #dataset.dicts.tgt.features))
print(string.format(' * maximum sequence length: source = %d; target = %d',
trainData.maxSourceLength, trainData.maxTargetLength))
print("nSourceRows", trainData.nSourceRows)
print(string.format(' * number of training instances: %d', #trainData.tgt))
print(string.format(' * maximum batch size: %d', opt.max_batch_size))
end
else
local metadata = {
options = opt,
vocabSize = {
source = dataset.dicts.src.words:size(),
target = dataset.dicts.tgt.words:size()
},
additionalFeatures = {
source = #dataset.dicts.src.features,
target = #dataset.dicts.tgt.features
},
sequenceLength = {
source = trainData.maxSourceLength,
target = trainData.maxTargetLength
},
trainingSentences = #trainData.tgt
}
onmt.utils.Log.logJson(metadata)
end
if not opt.json_log then
if not opt.just_gen then
print('Building model...')
end
end
local model = {}
local verbose = true
-- make decoder first
model.decoder = onmt.Models.buildDecoder(opt, dataset.dicts.tgt, verbose, tripV)
-- send to gpu immediately to make cloning things simpler
onmt.utils.Cuda.convert(model.decoder)
model.encoder = onmt.BoxTableEncoder({
vocabSize = dataset.dicts.src.words:size(),
encDim = opt.enc_emb_size,
decDim = opt.rnn_size,
feat_merge = opt.feat_merge,
nFeatures = g_nFeatures,
nLayers = opt.enc_layers,
nRows = trainData.nSourceRows,
nCols = g_nCols,
pool = opt.pool or "mean",
effectiveDecLayers = opt.layers*2,
dropout = opt.enc_dropout,
relu = opt.enc_relu,
wordVecSize = opt.word_vec_size,
input_feed = opt.input_feed
})
onmt.utils.Cuda.convert(model.encoder)
-- share all the things
assert(model.encoder.lut.weight:size(1) == model.decoder.inputNet.net.weight:size(1))
model.encoder.lut:share(model.decoder.inputNet.net, 'weight', 'gradWeight')
model.encoder:shareTranforms()
trainModel(model, trainData, validData, dataset, nil)
end
main()