-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
53 lines (44 loc) · 1.61 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from dotenv import load_dotenv
import os
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from langchain.callbacks import get_openai_callback
def main():
load_dotenv()
st.set_page_config(page_title="Ask Your PDF")
st.header("Ask Your PDF ")
# Uploading PDF
pdf = st.file_uploader("Upload your pdf", type="pdf")
# Extract the text
if pdf is not None:
pdf_reader = PdfReader(pdf)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
# splitting into chunks
text_splitter = CharacterTextSplitter(
separator = "\n",
chunk_size = 1000,
chunk_overlap = 200,
length_function = len
)
chunks = text_splitter.split_text(text)
#create embeddings
embeddings = OpenAIEmbeddings()
knowledge_base = FAISS.from_texts(chunks, embeddings)
user_questions = st.text_input("Ask a questions about your PDF:")
if user_questions:
docs = knowledge_base.similarity_search(user_questions)
llm= OpenAI()
chain = load_qa_chain(llm, chain_type="stuff")
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=user_questions)
print(cb)
st.write(response)
if __name__ =='__main__':
main()