-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodel.py
55 lines (41 loc) · 1.26 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
import torch.nn as nn
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = nn.Conv2d(1,4,5)
self.norm1 = nn.BatchNorm2d(4)
self.conv2 = nn.Conv2d(4,8,5)
self.norm2 = nn.BatchNorm2d(8)
self.conv3 = nn.Conv2d(8,16,6)
self.norm3 = nn.BatchNorm2d(16)
self.lin1 = nn.Linear(768,64)
self.lin2 = nn.Linear(64,16)
self.lin3 = nn.Linear(16,3)
self.maxpool = nn.MaxPool2d(2)
self.dropout = nn.Dropout2d(0.1)
self.relu = nn.ReLU()
self.flatten = nn.Flatten()
def forward(self,x):
x = self.conv1(x)
x = self.norm1(x)
x = self.maxpool(x)
x = self.relu(x)
x = self.conv2(x)
x = self.norm2(x)
x = self.maxpool(x)
x = self.relu(x)
x = self.conv3(x)
x = self.norm3(x)
x = self.maxpool(x)
x = self.relu(x)
x = self.flatten(x)
x = self.lin1(x)
x = self.relu(x)
x = self.lin2(x)
x = self.relu(x)
return self.lin3(x)
def load(self, path):
self.load_state_dict(torch.load(path))
def save(self, path):
torch.save(self.state_dict(), path)