-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrangler.R
75 lines (64 loc) · 3.04 KB
/
wrangler.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
library(DBI)
library(ggpubr)
library(gtsummary)
library(flextable)
library(tidyverse)
con <- dbConnect(odbc::odbc(), .connection_string = "Driver={ODBC Driver 17 for SQL Server};server=192.168.10.208;uid=sa;pwd=Ibrahim@66!88;database=Helix", timeout = 10)
# qry = "SELECT * FROM vw_snakebites"
# bites <- dbGetQuery(con, qry)
#
# qry <- "SELECT [id],[year],[month],[name],[invs],[cons],[drugs],[exems],[wds],[cds],[procs],[svs],[cost],[paid] FROM [Helix].[dbo].[vw_payments]"
# payments <- dbGetQuery(con, qry)
#
#
# write_rds(payments, "payments.rds")
qry <- "spSnakesCosts"
bites <- dbGetQuery(con, qry)
bites <- bites %>%
filter(!is.na(year) & year < 2020 ) %>%
mutate(
across(c(cons: exems), ~case_when(.x <0 ~ 0, T ~ .x)),
across(cons:exems, ~round(., 1)),
across(c(cons: exems), ~replace_na(., 0)),
paid = (cons + drugs + svs - exems),
across(c(cons:exems), ~case_when(year == 2016 ~ .x/4.3, year == 2017 ~ .x/4.54, year == 2018 ~ .x/4.83, year == 2019 ~ .x/5.7)),
occup = fct_lump_prop(occup, prop = .01),
paid = (cons + drugs + svs - exems),
nhis = factor(nhis, levels = 0:1, labels = c("No", "Yes")),
act = case_when(month %in% c(11, 12) ~ 1, month %in% c(1:5) ~ 2, month %in% c(6,7) ~ 3, month %in% c(8:10) ~ 4),
act = factor(act, levels = 1:4, labels = c("Harvesting", "Irrigation/hunting", "Land preparation", "Farming")),
seas = case_when(month %in% c(1:7, 12) ~ 1, month %in% 8:11 ~ 2),
seas = factor(seas, levels = 1:2, labels = c("Dry", "Rainy")),
month = factor(month, levels = 1:12, labels = month.abb),
los = abs(los),
los = case_when(los > out ~ as.double(out), T ~ as.double(los)),
age = abs(age),
outcome = fct_collapse(outcome, "Successful treatment" = c("For Subsequent review", "Successful treatment"))
) %>%
select(everything(), mode = Name)
bites <- sjlabelled::var_labels(bites,
age = "Age",
gender = "Gender",
nhis = "NHIS",
occup = "Occupation",
outcome = "Outcome",
los = "Length of stay",
pid = "PatientID",
id = "Encounter ID",
year = "Year",
month = "Month",
act = "Activity related to farming",
seas = "Season",
mode = "Payment mode",
cons = "Consultation",
drugs = "Drugs",
exems = "Exemptions",
svs = "Other Services",
paid = "Payment")
write_rds(bites, "bites.rds")
mn <- mean(bites[bites$los < 100, "los"], na.rm = T)
sd <- sd(bites[bites$los < 100, "los"], na.rm = T)
out <- mn + (sd * 3)
sids <- sample(bites$id, 20)
smpl <- bites[bites$id %in% sids,]
write_rds(smpl, "sample bites.rds")