-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrainer.py
233 lines (207 loc) · 12.4 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import argparse
import os
from pathlib import Path
import numpy as np
import sklearn.model_selection
import tensorflow as tf
from pretraining import datasets
from pretraining.utils import task_solver
from transplant.datasets import icentia11k
from transplant.evaluation import CustomCheckpoint, f1
from transplant.modules.utils import build_input_tensor_from_shape
from transplant.utils import (
matches_spec,
load_pkl,
save_pkl
)
def _create_dataset_from_generator(patient_ids, samples_per_patient=None):
samples_per_patient = samples_per_patient or args.samples_per_patient
if args.task == 'rhythm':
dataset = datasets.rhythm_dataset(
db_dir=str(args.train), patient_ids=patient_ids, frame_size=args.frame_size,
unzipped=args.unzipped, samples_per_patient=samples_per_patient)
elif args.task == 'beat':
dataset = datasets.beat_dataset(
db_dir=str(args.train), patient_ids=patient_ids, frame_size=args.frame_size,
unzipped=args.unzipped, samples_per_patient=samples_per_patient)
elif args.task == 'hr':
dataset = datasets.heart_rate_dataset(
db_dir=str(args.train), patient_ids=patient_ids, frame_size=args.frame_size,
unzipped=args.unzipped, samples_per_patient=samples_per_patient)
elif args.task == 'cpc':
dataset = datasets.cpc_dataset(
db_dir=str(args.train), patient_ids=patient_ids, frame_size=args.frame_size,
context_size=args.context_size, ns=args.ns, context_overlap=args.context_overlap,
positive_offset=args.positive_offset, num_buffered_patients=16,
unzipped=args.unzipped, samples_per_patient=samples_per_patient)
else:
raise ValueError('unknown task: {}'.format(args.task))
return dataset
def _create_dataset_from_data(data):
x, y = data['x'], data['y']
if args.task in ['rhythm', 'beat', 'hr']:
spec = (tf.TensorSpec((None, args.frame_size, 1), tf.float32),
tf.TensorSpec((None,), tf.int32))
elif args.task == 'cpc':
spec = ({'context': tf.TensorSpec((None, args.context_size, args.frame_size, 1), tf.float32),
'samples': tf.TensorSpec((None, args.ns + 1, args.frame_size, 1), tf.float32)},
tf.TensorSpec((None,), tf.int32))
else:
raise ValueError('unknown task: {}'.format(args.task))
if not matches_spec((x, y), spec, ignore_batch_dim=True):
raise ValueError('data does not match the required spec: {}'.format(spec))
dataset = tf.data.Dataset.from_tensor_slices((x, y))
return dataset
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--job-dir', type=Path, required=True, help='Job output directory.')
parser.add_argument('--task', required=True, help='Training task: `rhythm`, `beat`, `hr`, `cpc`.')
parser.add_argument('--train', type=Path, required=True, help='Path to the train directory or a pickled file.')
parser.add_argument('--val-file', type=Path, help='Path to the pickled validation file.\nOverrides --val-size.')
parser.add_argument('--cache-val', type=Path, help='Path to where the newly created validation set will be cached.')
parser.add_argument('--weights-file', type=Path, help='Path to a checkpoint to load the weights from.')
parser.add_argument('--unzipped', action='store_true', help='Whether files in the train directory are unzipped.')
parser.add_argument('--val-patients', type=float, default=None,
help='Number of patients or proportion of patients '
'that will be moved from train to validation.')
parser.add_argument('--val-size', type=int, default=None,
help='Size of the validation set when collecting data from train directory.')
parser.add_argument('--arch', default='resnet18', help='Architecture of the ECG feature extractor: '
'`resnet18`, `resnet34` or `resnet50`.')
parser.add_argument('--stages', type=int, default=None, help='Stages of the residual network '
'that will be pretrained.')
parser.add_argument('--frame-size', type=int, default=2048, help='Frame size.')
parser.add_argument('--context-size', type=int, default=8, help='Context size measured in frames.')
parser.add_argument('--ns', type=int, default=1, help='Number of negative samples for the CPC.')
parser.add_argument('--positive-offset', type=int, default=0,
help='Offset of the positive sample from the context.')
parser.add_argument('--context-overlap', type=int, default=0, help='CPC Context overlap.')
parser.add_argument('--batch-size', type=int, default=32, help='Batch size.')
parser.add_argument('--samples-per-patient', type=int, default=1000,
help='Number of data points that are sampled from a patient file once it is read.')
parser.add_argument('--val-samples-per-patient', type=int, default=None,
help='Number of data points that are sampled from a validation patient file once it is read.\n'
'By default equal to --samples-per-patient.')
parser.add_argument('--steps-per-epoch', type=int, default=100, help='Number of steps per epoch.')
parser.add_argument('--epochs', type=int, default=1, help='Number of epochs.')
parser.add_argument('--val-metric', default='loss', help='Performance metric: either `loss`, `acc` or `f1`.')
parser.add_argument('--data-parallelism', type=int, default=1, help='Number of data loaders running in parallel.')
parser.add_argument('--seed', type=int, default=None, help='Random state.')
args, _ = parser.parse_known_args()
if args.val_metric not in ['loss', 'acc', 'f1']:
raise ValueError('Unknown metric: {}'.format(args.val_metric))
os.makedirs(str(args.job_dir), exist_ok=True)
print('Creating working directory in {}'.format(args.job_dir))
seed = args.seed or np.random.randint(2 ** 16)
print('Setting random state {}'.format(seed))
np.random.seed(seed)
if args.val_samples_per_patient is None:
args.val_samples_per_patient = args.samples_per_patient
if not args.val_file and args.val_patients:
if args.val_patients >= 1:
args.val_patients = int(args.val_patients)
if args.val_file:
print('Loading validation data from file {} ...'.format(args.val_file))
val = load_pkl(str(args.val_file))
validation_data = _create_dataset_from_data(val)
else:
val = None
validation_data = None
if args.train.is_file():
print('Loading train data from file {} ...'.format(args.train))
train = load_pkl(str(args.train))
if val:
# remove training examples of patients who belong to the validation set
train_mask = np.isin(train['patient_ids'], val['patient_ids'], invert=True)
train = {key: array[train_mask] for key, array in train.items()}
elif args.val_patients:
if args.task == 'cpc':
print('--val-patients is ignored when train is a pickled file because the negative samples '
'in the validation set cannot be guaranteed to come from only the validation patients.')
else:
print('Splitting data into train and validation')
_, val_patients_ids = sklearn.model_selection.train_test_split(
np.unique(train['patient_ids']), test_size=args.val_patients)
val_mask = np.isin(train['patient_ids'], val_patients_ids)
val = {key: array[val_mask] for key, array in train.items()}
validation_data = _create_dataset_from_data(val)
train_mask = ~val_mask
train = {key: array[train_mask] for key, array in train.items()}
train_size = len(train['y'])
steps_per_epoch = None
train_data = _create_dataset_from_data(train).shuffle(train_size)
else:
print('Building train data generators')
train_patient_ids = icentia11k.ds_patient_ids
if val:
# remove patients who belong to the validation set from train data
train_patient_ids = np.setdiff1d(train_patient_ids, val['patient_ids'])
elif args.val_patients:
print('Splitting patients into train and validation')
train_patient_ids, val_patient_ids = sklearn.model_selection.train_test_split(
train_patient_ids, test_size=args.val_patients)
# validation size is one validation epoch by default
val_size = args.val_size or (len(val_patient_ids) * args.val_samples_per_patient)
print('Collecting {} validation samples ...'.format(val_size))
validation_data = _create_dataset_from_generator(val_patient_ids, args.val_samples_per_patient)
val_x, val_y = next(validation_data.batch(val_size).as_numpy_iterator())
val = {'x': val_x, 'y': val_y, 'patient_ids': val_patient_ids}
if args.cache_val:
print('Caching the validation set in {} ...'.format(args.cache_val))
save_pkl(str(args.cache_val), x=val_x, y=val_y, patient_ids=val_patient_ids)
validation_data = _create_dataset_from_data(val)
steps_per_epoch = args.steps_per_epoch
if args.data_parallelism > 1:
split = len(train_patient_ids) // args.data_parallelism
train_patient_ids = tf.convert_to_tensor(train_patient_ids)
train_data = tf.data.Dataset.range(args.data_parallelism).interleave(
lambda i: _create_dataset_from_generator(train_patient_ids[i * split:(i + 1) * split],
args.samples_per_patient),
num_parallel_calls=tf.data.experimental.AUTOTUNE)
else:
train_data = _create_dataset_from_generator(train_patient_ids, args.samples_per_patient)
buffer_size = 16 * args.samples_per_patient # data from 16 patients
train_data = train_data.prefetch(tf.data.experimental.AUTOTUNE).shuffle(buffer_size)
train_data = train_data.batch(args.batch_size)
if val:
validation_data = validation_data.batch(args.batch_size)
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
print('Building model ...')
model = task_solver(args.task, args.arch, stages=args.stages)
model.compile(optimizer=tf.keras.optimizers.Adam(beta_1=0.9, beta_2=0.98, epsilon=1e-9),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy(name='acc')])
# initialize the weights of the model
input_shape, _ = tf.compat.v1.data.get_output_shapes(train_data)
input_dtype, _ = tf.compat.v1.data.get_output_types(train_data)
inputs = build_input_tensor_from_shape(input_shape, dtype=input_dtype, ignore_batch_dim=True)
model(inputs)
print('# model parameters: {:,d}'.format(model.count_params()))
if args.weights_file:
print('Loading weights from file {} ...'.format(args.weights_file))
model.load_weights(str(args.weights_file))
if args.val_metric in ['loss', 'acc']:
monitor = ('val_' + args.val_metric) if val else args.val_metric
checkpoint = tf.keras.callbacks.ModelCheckpoint(
filepath=str(args.job_dir / 'epoch_{epoch:02d}' / 'model.weights'),
monitor=monitor,
save_best_only=False,
save_weights_only=True,
mode='auto',
verbose=1)
elif args.val_metric == 'f1':
if val:
checkpoint = CustomCheckpoint(
filepath=str(args.job_dir / 'epoch_{epoch:02d}' / 'model.weights'),
data=(validation_data, val['y']),
score_fn=f1,
save_best_only=False,
verbose=1)
else:
raise ValueError('f1 metric may only be used in combination with the validation set.')
else:
raise ValueError('Unknown metric: {}'.format(args.val_metric))
logger = tf.keras.callbacks.CSVLogger(str(args.job_dir / 'history.csv'))
model.fit(train_data, steps_per_epoch=steps_per_epoch, verbose=2, epochs=args.epochs,
validation_data=validation_data, callbacks=[checkpoint, logger])