-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
129 lines (108 loc) · 5.17 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import tensorflow as tf
import time
import os
from utils import (
input_setup,
checkpoint_dir,
read_data,
merge,
checkimage,
imsave
)
class SRCNN(object):
def __init__(self,
sess,
image_size,
label_size,
c_dim):
self.sess = sess
self.image_size = image_size
self.label_size = label_size
self.c_dim = c_dim
self.build_model()
def build_model(self):
self.images = tf.placeholder(tf.float32, [None, self.image_size, self.image_size, self.c_dim], name='images')
self.labels = tf.placeholder(tf.float32, [None, self.label_size, self.label_size, self.c_dim], name='labels')
self.weights = {
'w1': tf.Variable(tf.random_normal([9, 9, self.c_dim, 64], stddev=1e-3), name='w1'),
'w2': tf.Variable(tf.random_normal([1, 1, 64, 32], stddev=1e-3), name='w2'),
'w3': tf.Variable(tf.random_normal([5, 5, 32, self.c_dim], stddev=1e-3), name='w3')
}
self.biases = {
'b1': tf.Variable(tf.zeros([64], name='b1')),
'b2': tf.Variable(tf.zeros([32], name='b2')),
'b3': tf.Variable(tf.zeros([self.c_dim], name='b3'))
}
self.pred = self.model()
self.loss = tf.reduce_mean(tf.square(self.labels - self.pred))
self.saver = tf.train.Saver() # To save checkpoint
def model(self):
conv1 = tf.nn.relu(tf.nn.conv2d(self.images, self.weights['w1'], strides=[1,1,1,1], padding='VALID') + self.biases['b1'])
conv2 = tf.nn.relu(tf.nn.conv2d(conv1, self.weights['w2'], strides=[1,1,1,1], padding='VALID') + self.biases['b2'])
conv3 = tf.nn.conv2d(conv2, self.weights['w3'], strides=[1,1,1,1], padding='VALID') + self.biases['b3'] # This layer don't need ReLU
return conv3
def train(self, config):
# NOTE : if train, the nx, ny are ingnored
nx, ny = input_setup(config)
data_dir = checkpoint_dir(config)
input_, label_ = read_data(data_dir)
# Stochastic gradient descent with the standard backpropagation
#self.train_op = tf.train.GradientDescentOptimizer(config.learning_rate).minimize(self.loss)
self.train_op = tf.train.AdamOptimizer(learning_rate=config.learning_rate).minimize(self.loss)
tf.initialize_all_variables().run()
counter = 0
time_ = time.time()
self.load(config.checkpoint_dir)
# Train
if config.is_train:
print("Now Start Training...")
for ep in range(config.epoch):
# Run by batch images
batch_idxs = len(input_) // config.batch_size
for idx in range(0, batch_idxs):
batch_images = input_[idx * config.batch_size : (idx + 1) * config.batch_size]
batch_labels = label_[idx * config.batch_size : (idx + 1) * config.batch_size]
counter += 1
_, err = self.sess.run([self.train_op, self.loss], feed_dict={self.images: batch_images, self.labels: batch_labels})
if counter % 10 == 0:
print("Epoch: [%2d], step: [%2d], time: [%4.4f], loss: [%.8f]" % ((ep+1), counter, time.time()-time_, err))
#print(label_[1] - self.pred.eval({self.images: input_})[1],'loss:]',err)
if counter % 500 == 0:
self.save(config.checkpoint_dir, counter)
# Test
else:
print("Now Start Testing...")
#print("nx","ny",nx,ny)
result = self.pred.eval({self.images: input_})
#print(label_[1] - result[1])
image = merge(result, [nx, ny], self.c_dim)
#image_LR = merge(input_, [nx, ny], self.c_dim)
#checkimage(image_LR)
imsave(image, config.result_dir+'/result.png', config)
def load(self, checkpoint_dir):
"""
To load the checkpoint use to test or pretrain
"""
print("\nReading Checkpoints.....\n\n")
model_dir = "%s_%s" % ("srcnn", self.label_size)# give the model name by label_size
checkpoint_dir = os.path.join(checkpoint_dir, model_dir)
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
# Check the checkpoint is exist
if ckpt and ckpt.model_checkpoint_path:
ckpt_path = str(ckpt.model_checkpoint_path) # convert the unicode to string
self.saver.restore(self.sess, os.path.join(os.getcwd(), ckpt_path))
print("\n Checkpoint Loading Success! %s\n\n"% ckpt_path)
else:
print("\n! Checkpoint Loading Failed \n\n")
def save(self, checkpoint_dir, step):
"""
To save the checkpoint use to test or pretrain
"""
model_name = "SRCNN.model"
model_dir = "%s_%s" % ("srcnn", self.label_size)
checkpoint_dir = os.path.join(checkpoint_dir, model_dir)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
self.saver.save(self.sess,
os.path.join(checkpoint_dir, model_name),
global_step=step)