forked from FastLED/FastLED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pixelset.h
301 lines (246 loc) · 15.8 KB
/
pixelset.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#ifndef __INC_PIXELSET_H
#define __INC_PIXELSET_H
#include "FastLED.h"
/// Represents a set of CRGB led objects. Provides the [] array operator, and works like a normal array in that case.
/// This should be kept in sync with the set of functions provided by CRGB as well as functions in colorutils. Note
/// that a pixel set is a window into another set of led data, it is not its own set of led data.
template<class PIXEL_TYPE>
class CPixelView {
public:
const int8_t dir;
const int len;
PIXEL_TYPE * const leds;
PIXEL_TYPE * const end_pos;
public:
/// PixelSet copy constructor
inline CPixelView(const CPixelView & other) : dir(other.dir), len(other.len), leds(other.leds), end_pos(other.end_pos) {}
/// pixelset constructor for a pixel set starting at the given PIXEL_TYPE* and going for _len leds. Note that the length
/// can be backwards, creating a PixelSet that walks backwards over the data
/// @param leds point to the raw led data
/// @param len how many leds in this set
inline CPixelView(PIXEL_TYPE *_leds, int _len) : dir(_len < 0 ? -1 : 1), len(_len), leds(_leds), end_pos(_leds + _len) {}
/// PixelSet constructor for the given set of leds, with start and end boundaries. Note that start can be after
/// end, resulting in a set that will iterate backwards
/// @param leds point to the raw led data
/// @param start the start index of the leds for this array
/// @param end the end index of the leds for this array
inline CPixelView(PIXEL_TYPE *_leds, int _start, int _end) : dir(((_end-_start)<0) ? -1 : 1), len((_end - _start) + dir), leds(_leds + _start), end_pos(_leds + _start + len) {}
/// Get the size of this set
/// @return the size of the set
int size() { return abs(len); }
/// Whether or not this set goes backwards
/// @return whether or not the set is backwards
bool reversed() { return len < 0; }
/// do these sets point to the same thing (note, this is different from the contents of the set being the same)
bool operator==(const CPixelView & rhs) const { return leds == rhs.leds && len == rhs.len && dir == rhs.dir; }
/// do these sets point to the different things (note, this is different from the contents of the set being the same)
bool operator!=(const CPixelView & rhs) const { return leds != rhs.leds || len != rhs.len || dir != rhs.dir; }
/// access a single element in this set, just like an array operator
inline PIXEL_TYPE & operator[](int x) const { if(dir & 0x80) { return leds[-x]; } else { return leds[x]; } }
/// Access an inclusive subset of the leds in this set. Note that start can be greater than end, which will
/// result in a reverse ordering for many functions (useful for mirroring)
/// @param start the first element from this set for the new subset
/// @param end the last element for the new subset
inline CPixelView operator()(int start, int end) { return CPixelView(leds, start, end); }
/// Access an inclusive subset of the leds in this set, starting from the first.
/// @param end the last element for the new subset
/// Not sure i want this? inline CPixelView operator()(int end) { return CPixelView(leds, 0, end); }
/// Return the reverse ordering of this set
inline CPixelView operator-() { return CPixelView(leds + len - dir, len - dir, 0); }
/// Return a pointer to the first element in this set
inline operator PIXEL_TYPE* () const { return leds; }
/// Assign the passed in color to all elements in this set
/// @param color the new color for the elements in the set
inline CPixelView & operator=(const PIXEL_TYPE & color) {
for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel) = color; }
return *this;
}
void dump() const {
/**
Serial.print("len: "); Serial.print(len); Serial.print(", dir:"); Serial.print((int)dir);
Serial.print(", range:"); Serial.print((uint32_t)leds); Serial.print("-"); Serial.print((uint32_t)end_pos);
Serial.print(", diff:"); Serial.print((int32_t)(end_pos - leds));
Serial.println("");
**/
}
/// Copy the contents of the passed in set to our set. Note if one set is smaller than the other, only the
/// smallest number of items will be copied over.
inline CPixelView & operator=(const CPixelView & rhs) {
for(iterator pixel = begin(), rhspixel = rhs.begin(), _end = end(), rhs_end = rhs.end(); (pixel != _end) && (rhspixel != rhs_end); ++pixel, ++rhspixel) {
(*pixel) = (*rhspixel);
}
return *this;
}
/// @name modification/scaling operators
//@{
/// Add the passed in value to r,g, b for all the pixels in this set
inline CPixelView & addToRGB(uint8_t inc) { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel) += inc; } return *this; }
/// Add every pixel in the other set to this set
inline CPixelView & operator+=(CPixelView & rhs) { for(iterator pixel = begin(), rhspixel = rhs.begin(), _end = end(), rhs_end = rhs.end(); (pixel != _end) && (rhspixel != rhs_end); ++pixel, ++rhspixel) { (*pixel) += (*rhspixel); } return *this; }
/// Subtract the passed in value from r,g,b for all pixels in this set
inline CPixelView & subFromRGB(uint8_t inc) { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel) -= inc; } return *this; }
/// Subtract every pixel in the other set from this set
inline CPixelView & operator-=(CPixelView & rhs) { for(iterator pixel = begin(), rhspixel = rhs.begin(), _end = end(), rhs_end = rhs.end(); (pixel != _end) && (rhspixel != rhs_end); ++pixel, ++rhspixel) { (*pixel) -= (*rhspixel); } return *this; }
/// Increment every pixel value in this set
inline CPixelView & operator++() { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel)++; } return *this; }
/// Increment every pixel value in this set
inline CPixelView & operator++(int DUMMY_ARG) { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel)++; } return *this; }
/// Decrement every pixel value in this set
inline CPixelView & operator--() { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel)--; } return *this; }
/// Decrement every pixel value in this set
inline CPixelView & operator--(int DUMMY_ARG) { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel)--; } return *this; }
/// Divide every led by the given value
inline CPixelView & operator/=(uint8_t d) { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel) /= d; } return *this; }
/// Shift every led in this set right by the given number of bits
inline CPixelView & operator>>=(uint8_t d) { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel) >>= d; } return *this; }
/// Multiply every led in this set by the given value
inline CPixelView & operator*=(uint8_t d) { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel) *= d; } return *this; }
/// Scale every led by the given scale
inline CPixelView & nscale8_video(uint8_t scaledown) { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel).nscale8_video(scaledown); } return *this;}
/// Scale down every led by the given scale
inline CPixelView & operator%=(uint8_t scaledown) { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel).nscale8_video(scaledown); } return *this; }
/// Fade every led down by the given scale
inline CPixelView & fadeLightBy(uint8_t fadefactor) { return nscale8_video(255 - fadefactor); }
/// Scale every led by the given scale
inline CPixelView & nscale8(uint8_t scaledown) { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel).nscale8(scaledown); } return *this; }
/// Scale every led by the given scale
inline CPixelView & nscale8(PIXEL_TYPE & scaledown) { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel).nscale8(scaledown); } return *this; }
/// Scale every led in this set by every led in the other set
inline CPixelView & nscale8(CPixelView & rhs) { for(iterator pixel = begin(), rhspixel = rhs.begin(), _end = end(), rhs_end = rhs.end(); (pixel != _end) && (rhspixel != rhs_end); ++pixel, ++rhspixel) { (*pixel).nscale8((*rhspixel)); } return *this; }
/// Fade every led down by the given scale
inline CPixelView & fadeToBlackBy(uint8_t fade) { return nscale8(255 - fade); }
/// Apply the PIXEL_TYPE |= operator to every pixel in this set with the given PIXEL_TYPE value (bringing each channel to the higher of the two values)
inline CPixelView & operator|=(const PIXEL_TYPE & rhs) { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel) |= rhs; } return *this; }
/// Apply the PIXEL_TYPE |= operator to every pixel in this set with every pixel in the passed in set
inline CPixelView & operator|=(const CPixelView & rhs) { for(iterator pixel = begin(), rhspixel = rhs.begin(), _end = end(), rhs_end = rhs.end(); (pixel != _end) && (rhspixel != rhs_end); ++pixel, ++rhspixel) { (*pixel) |= (*rhspixel); } return *this; }
/// Apply the PIXEL_TYPE |= operator to every pixel in this set
inline CPixelView & operator|=(uint8_t d) { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel) |= d; } return *this; }
/// Apply the PIXEL_TYPE &= operator to every pixel in this set with the given PIXEL_TYPE value (bringing each channel down to the lower of the two values)
inline CPixelView & operator&=(const PIXEL_TYPE & rhs) { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel) &= rhs; } return *this; }
/// Apply the PIXEL_TYPE &= operator to every pixel in this set with every pixel in the passed in set
inline CPixelView & operator&=(const CPixelView & rhs) { for(iterator pixel = begin(), rhspixel = rhs.begin(), _end = end(), rhs_end = rhs.end(); (pixel != _end) && (rhspixel != rhs_end); ++pixel, ++rhspixel) { (*pixel) &= (*rhspixel); } return *this; }
/// APply the PIXEL_TYPE &= operator to every pixel in this set with the passed in value
inline CPixelView & operator&=(uint8_t d) { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { (*pixel) &= d; } return *this; }
//@}
/// Returns whether or not any leds in this set are non-zero
inline operator bool() { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { if((*pixel)) return true; } return false; }
// Color util functions
inline CPixelView & fill_solid(const PIXEL_TYPE & color) { *this = color; return *this; }
inline CPixelView & fill_solid(const CHSV & color) { if(dir>0) { *this = color; return *this; } }
inline CPixelView & fill_rainbow(uint8_t initialhue, uint8_t deltahue=5) {
if(dir >= 0) {
::fill_rainbow(leds,len,initialhue,deltahue);
} else {
::fill_rainbow(leds+len+1,-len,initialhue,deltahue);
}
return *this;
}
inline CPixelView & fill_gradient(const CHSV & startcolor, const CHSV & endcolor, TGradientDirectionCode directionCode = SHORTEST_HUES) {
if(dir >= 0) {
::fill_gradient(leds,len,startcolor, endcolor, directionCode);
} else {
::fill_gradient(leds + len + 1, (-len), endcolor, startcolor, directionCode);
}
return *this;
}
inline CPixelView & fill_gradient(const CHSV & c1, const CHSV & c2, const CHSV & c3, TGradientDirectionCode directionCode = SHORTEST_HUES) {
if(dir >= 0) {
::fill_gradient(leds, len, c1, c2, c3, directionCode);
} else {
::fill_gradient(leds + len + 1, -len, c3, c2, c1, directionCode);
}
return *this;
}
inline CPixelView & fill_gradient(const CHSV & c1, const CHSV & c2, const CHSV & c3, const CHSV & c4, TGradientDirectionCode directionCode = SHORTEST_HUES) {
if(dir >= 0) {
::fill_gradient(leds, len, c1, c2, c3, c4, directionCode);
} else {
::fill_gradient(leds + len + 1, -len, c4, c3, c2, c1, directionCode);
}
return *this;
}
inline CPixelView & fill_gradient_RGB(const PIXEL_TYPE & startcolor, const PIXEL_TYPE & endcolor, TGradientDirectionCode directionCode = SHORTEST_HUES) {
if(dir >= 0) {
::fill_gradient_RGB(leds,len,startcolor, endcolor);
} else {
::fill_gradient_RGB(leds + len + 1, (-len), endcolor, startcolor);
}
return *this;
}
inline CPixelView & fill_gradient_RGB(const PIXEL_TYPE & c1, const PIXEL_TYPE & c2, const PIXEL_TYPE & c3) {
if(dir >= 0) {
::fill_gradient_RGB(leds, len, c1, c2, c3);
} else {
::fill_gradient_RGB(leds + len + 1, -len, c3, c2, c1);
}
return *this;
}
inline CPixelView & fill_gradient_RGB(const PIXEL_TYPE & c1, const PIXEL_TYPE & c2, const PIXEL_TYPE & c3, const PIXEL_TYPE & c4) {
if(dir >= 0) {
::fill_gradient_RGB(leds, len, c1, c2, c3, c4);
} else {
::fill_gradient_RGB(leds + len + 1, -len, c4, c3, c2, c1);
}
return *this;
}
inline CPixelView & nblend(const PIXEL_TYPE & overlay, fract8 amountOfOverlay) { for(iterator pixel = begin(), _end = end(); pixel != _end; ++pixel) { ::nblend((*pixel), overlay, amountOfOverlay); } return *this; }
inline CPixelView & nblend(const CPixelView & rhs, fract8 amountOfOverlay) { for(iterator pixel = begin(), rhspixel = rhs.begin(), _end = end(), rhs_end = rhs.end(); (pixel != _end) && (rhspixel != rhs_end); ++pixel, ++rhspixel) { ::nblend((*pixel), (*rhspixel), amountOfOverlay); } return *this; }
// Note: only bringing in a 1d blur, not sure 2d blur makes sense when looking at sub arrays
inline CPixelView & blur1d(fract8 blur_amount) {
if(dir >= 0) {
::blur1d(leds, len, blur_amount);
} else {
::blur1d(leds + len + 1, -len, blur_amount);
}
return *this;
}
inline CPixelView & napplyGamma_video(float gamma) {
if(dir >= 0) {
::napplyGamma_video(leds, len, gamma);
} else {
::napplyGamma_video(leds + len + 1, -len, gamma);
}
return *this;
}
inline CPixelView & napplyGamma_video(float gammaR, float gammaG, float gammaB) {
if(dir >= 0) {
::napplyGamma_video(leds, len, gammaR, gammaG, gammaB);
} else {
::napplyGamma_video(leds + len + 1, -len, gammaR, gammaG, gammaB);
}
return *this;
}
// TODO: Make this a fully specified/proper iterator
template <class T>
class pixelset_iterator_base {
T * leds;
const int8_t dir;
public:
__attribute__((always_inline)) inline pixelset_iterator_base(const pixelset_iterator_base & rhs) : leds(rhs.leds), dir(rhs.dir) {}
__attribute__((always_inline)) inline pixelset_iterator_base(T * _leds, const char _dir) : leds(_leds), dir(_dir) {}
__attribute__((always_inline)) inline pixelset_iterator_base& operator++() { leds += dir; return *this; }
__attribute__((always_inline)) inline pixelset_iterator_base operator++(int) { pixelset_iterator_base tmp(*this); leds += dir; return tmp; }
__attribute__((always_inline)) inline bool operator==(pixelset_iterator_base & other) const { return leds == other.leds; } // && set==other.set; }
__attribute__((always_inline)) inline bool operator!=(pixelset_iterator_base & other) const { return leds != other.leds; } // || set != other.set; }
__attribute__((always_inline)) inline PIXEL_TYPE& operator*() const { return *leds; }
};
typedef pixelset_iterator_base<PIXEL_TYPE> iterator;
typedef pixelset_iterator_base<const PIXEL_TYPE> const_iterator;
iterator begin() { return iterator(leds, dir); }
iterator end() { return iterator(end_pos, dir); }
iterator begin() const { return iterator(leds, dir); }
iterator end() const { return iterator(end_pos, dir); }
const_iterator cbegin() const { return const_iterator(leds, dir); }
const_iterator cend() const { return const_iterator(end_pos, dir); }
};
typedef CPixelView<CRGB> CRGBSet;
__attribute__((always_inline))
inline CRGB *operator+(const CRGBSet & pixels, int offset) { return (CRGB*)pixels + offset; }
template<int SIZE>
class CRGBArray : public CPixelView<CRGB> {
CRGB rawleds[SIZE];
public:
CRGBArray() : CPixelView<CRGB>(rawleds, SIZE) {}
using CPixelView::operator=;
};
#endif