-
Notifications
You must be signed in to change notification settings - Fork 4
/
yolo_v2_class.hpp
121 lines (100 loc) · 3.01 KB
/
yolo_v2_class.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#pragma once
#include <memory>
#include <vector>
#include <deque>
#include <algorithm>
#ifdef OPENCV
#include <opencv2/opencv.hpp> // C++
#include "opencv2/highgui/highgui_c.h" // C
#include "opencv2/imgproc/imgproc_c.h" // C
#endif // OPENCV
#ifdef YOLODLL_EXPORTS
#define YOLODLL_API __declspec(dllexport)
#else
#define YOLODLL_API __declspec(dllimport)
#endif
struct bbox_t {
unsigned int x, y, w, h; // (x,y) - top-left corner, (w, h) - width & height of bounded box
float prob; // confidence - probability that the object was found correctly
unsigned int obj_id; // class of object - from range [0, classes-1]
unsigned int track_id; // tracking id for video (0 - untracked, 1 - inf - tracked object)
};
struct image_t {
int h; // height
int w; // width
int c; // number of chanels (3 - for RGB)
float *data; // pointer to the image data
};
class Detector {
std::shared_ptr<void> detector_gpu_ptr;
public:
float nms = .4;
YOLODLL_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
YOLODLL_API ~Detector();
YOLODLL_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2);
YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2);
static YOLODLL_API image_t load_image(std::string image_filename);
static YOLODLL_API void free_image(image_t m);
YOLODLL_API std::vector<bbox_t> tracking(std::vector<bbox_t> cur_bbox_vec, int const frames_story = 4);
#ifdef OPENCV
std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2)
{
if(mat.data == NULL)
throw std::runtime_error("file not found");
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; });
*image_ptr = mat_to_image(mat);
return detect(*image_ptr, thresh);
}
private:
static image_t mat_to_image(cv::Mat img)
{
std::shared_ptr<IplImage> ipl_small = std::make_shared<IplImage>(img);
image_t im_small = ipl_to_image(ipl_small.get());
rgbgr_image(im_small);
return im_small;
}
static image_t ipl_to_image(IplImage* src)
{
unsigned char *data = (unsigned char *)src->imageData;
int h = src->height;
int w = src->width;
int c = src->nChannels;
int step = src->widthStep;
image_t out = make_image_custom(w, h, c);
int i, j, k, count = 0;;
for (k = 0; k < c; ++k) {
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
out.data[count++] = data[i*step + j*c + k] / 255.;
}
}
}
return out;
}
static image_t make_empty_image(int w, int h, int c)
{
image_t out;
out.data = 0;
out.h = h;
out.w = w;
out.c = c;
return out;
}
static image_t make_image_custom(int w, int h, int c)
{
image_t out = make_empty_image(w, h, c);
out.data = (float *)calloc(h*w*c, sizeof(float));
return out;
}
static void rgbgr_image(image_t im)
{
int i;
for (i = 0; i < im.w*im.h; ++i) {
float swap = im.data[i];
im.data[i] = im.data[i + im.w*im.h * 2];
im.data[i + im.w*im.h * 2] = swap;
}
}
#endif // OPENCV
std::deque<std::vector<bbox_t>> prev_bbox_vec_deque;
};