forked from gcorso/DiffDock
-
Notifications
You must be signed in to change notification settings - Fork 1
/
inference.py
194 lines (169 loc) · 11.1 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import copy
import os
import torch
from argparse import ArgumentParser, Namespace
from rdkit.Chem import RemoveHs
from functools import partial
import numpy as np
import pandas as pd
from rdkit import RDLogger
from torch_geometric.loader import DataLoader
from datasets.process_mols import write_mol_with_coords
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl, get_t_schedule
from utils.inference_utils import InferenceDataset, set_nones
from utils.sampling import randomize_position, sampling
from utils.utils import get_model
from utils.visualise import PDBFile
from tqdm import tqdm
RDLogger.DisableLog('rdApp.*')
import yaml
parser = ArgumentParser()
parser.add_argument('--protein_ligand_csv', type=str, default=None, help='Path to a .csv file specifying the input as described in the README. If this is not None, it will be used instead of the --protein_path, --protein_sequence and --ligand parameters')
parser.add_argument('--complex_name', type=str, default='1a0q', help='Name that the complex will be saved with')
parser.add_argument('--protein_path', type=str, default=None, help='Path to the protein file')
parser.add_argument('--protein_sequence', type=str, default=None, help='Sequence of the protein for ESMFold, this is ignored if --protein_path is not None')
parser.add_argument('--ligand_description', type=str, default='CCCCC(NC(=O)CCC(=O)O)P(=O)(O)OC1=CC=CC=C1', help='Either a SMILES string or the path to a molecule file that rdkit can read')
parser.add_argument('--out_dir', type=str, default='results/user_inference', help='Directory where the outputs will be written to')
parser.add_argument('--save_visualisation', action='store_true', default=False, help='Save a pdb file with all of the steps of the reverse diffusion')
parser.add_argument('--samples_per_complex', type=int, default=10, help='Number of samples to generate')
parser.add_argument('--model_dir', type=str, default='workdir/paper_score_model', help='Path to folder with trained score model and hyperparameters')
parser.add_argument('--ckpt', type=str, default='best_ema_inference_epoch_model.pt', help='Checkpoint to use for the score model')
parser.add_argument('--confidence_model_dir', type=str, default='workdir/paper_confidence_model', help='Path to folder with trained confidence model and hyperparameters')
parser.add_argument('--confidence_ckpt', type=str, default='best_model_epoch75.pt', help='Checkpoint to use for the confidence model')
parser.add_argument('--batch_size', type=int, default=32, help='')
parser.add_argument('--no_final_step_noise', action='store_true', default=False, help='Use no noise in the final step of the reverse diffusion')
parser.add_argument('--inference_steps', type=int, default=20, help='Number of denoising steps')
parser.add_argument('--actual_steps', type=int, default=None, help='Number of denoising steps that are actually performed')
args = parser.parse_args()
os.makedirs(args.out_dir, exist_ok=True)
with open(f'{args.model_dir}/model_parameters.yml') as f:
score_model_args = Namespace(**yaml.full_load(f))
if args.confidence_model_dir is not None:
with open(f'{args.confidence_model_dir}/model_parameters.yml') as f:
confidence_args = Namespace(**yaml.full_load(f))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if args.protein_ligand_csv is not None:
df = pd.read_csv(args.protein_ligand_csv)
complex_name_list = set_nones(df['complex_name'].tolist())
protein_path_list = set_nones(df['protein_path'].tolist())
protein_sequence_list = set_nones(df['protein_sequence'].tolist())
ligand_description_list = set_nones(df['ligand_description'].tolist())
else:
complex_name_list = [args.complex_name]
protein_path_list = [args.protein_path]
protein_sequence_list = [args.protein_sequence]
ligand_description_list = [args.ligand_description]
complex_name_list = [name if name is not None else f"complex_{i}" for i, name in enumerate(complex_name_list)]
for name in complex_name_list:
write_dir = f'{args.out_dir}/{name}'
os.makedirs(write_dir, exist_ok=True)
# preprocessing of complexes into geometric graphs
test_dataset = InferenceDataset(out_dir=args.out_dir, complex_names=complex_name_list, protein_files=protein_path_list,
ligand_descriptions=ligand_description_list, protein_sequences=protein_sequence_list,
lm_embeddings=score_model_args.esm_embeddings_path is not None,
receptor_radius=score_model_args.receptor_radius, remove_hs=score_model_args.remove_hs,
c_alpha_max_neighbors=score_model_args.c_alpha_max_neighbors,
all_atoms=score_model_args.all_atoms, atom_radius=score_model_args.atom_radius,
atom_max_neighbors=score_model_args.atom_max_neighbors)
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)
if args.confidence_model_dir is not None and not confidence_args.use_original_model_cache:
print('HAPPENING | confidence model uses different type of graphs than the score model. '
'Loading (or creating if not existing) the data for the confidence model now.')
confidence_test_dataset = \
InferenceDataset(out_dir=args.out_dir, complex_names=complex_name_list, protein_files=protein_path_list,
ligand_descriptions=ligand_description_list, protein_sequences=protein_sequence_list,
lm_embeddings=confidence_args.esm_embeddings_path is not None,
receptor_radius=confidence_args.receptor_radius, remove_hs=confidence_args.remove_hs,
c_alpha_max_neighbors=confidence_args.c_alpha_max_neighbors,
all_atoms=confidence_args.all_atoms, atom_radius=confidence_args.atom_radius,
atom_max_neighbors=confidence_args.atom_max_neighbors,
precomputed_lm_embeddings=test_dataset.lm_embeddings)
else:
confidence_test_dataset = None
t_to_sigma = partial(t_to_sigma_compl, args=score_model_args)
model = get_model(score_model_args, device, t_to_sigma=t_to_sigma, no_parallel=True)
state_dict = torch.load(f'{args.model_dir}/{args.ckpt}', map_location=torch.device('cpu'))
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.eval()
if args.confidence_model_dir is not None:
confidence_model = get_model(confidence_args, device, t_to_sigma=t_to_sigma, no_parallel=True, confidence_mode=True)
state_dict = torch.load(f'{args.confidence_model_dir}/{args.confidence_ckpt}', map_location=torch.device('cpu'))
confidence_model.load_state_dict(state_dict, strict=True)
confidence_model = confidence_model.to(device)
confidence_model.eval()
else:
confidence_model = None
confidence_args = None
tr_schedule = get_t_schedule(inference_steps=args.inference_steps)
failures, skipped = 0, 0
N = args.samples_per_complex
print('Size of test dataset: ', len(test_dataset))
for idx, orig_complex_graph in tqdm(enumerate(test_loader)):
if not orig_complex_graph.success[0]:
skipped += 1
print(f"HAPPENING | The test dataset did not contain {test_dataset.complex_names[idx]} for {test_dataset.ligand_descriptions[idx]} and {test_dataset.protein_files[idx]}. We are skipping this complex.")
continue
try:
if confidence_test_dataset is not None:
confidence_complex_graph = confidence_test_dataset[idx]
if not confidence_complex_graph.success:
skipped += 1
print(f"HAPPENING | The confidence dataset did not contain {orig_complex_graph.name}. We are skipping this complex.")
continue
confidence_data_list = [copy.deepcopy(confidence_complex_graph) for _ in range(N)]
else:
confidence_data_list = None
data_list = [copy.deepcopy(orig_complex_graph) for _ in range(N)]
randomize_position(data_list, score_model_args.no_torsion, False, score_model_args.tr_sigma_max)
lig = orig_complex_graph.mol[0]
# initialize visualisation
pdb = None
if args.save_visualisation:
visualization_list = []
for graph in data_list:
pdb = PDBFile(lig)
pdb.add(lig, 0, 0)
pdb.add((orig_complex_graph['ligand'].pos + orig_complex_graph.original_center).detach().cpu(), 1, 0)
pdb.add((graph['ligand'].pos + graph.original_center).detach().cpu(), part=1, order=1)
visualization_list.append(pdb)
else:
visualization_list = None
# run reverse diffusion
data_list, confidence = sampling(data_list=data_list, model=model,
inference_steps=args.actual_steps if args.actual_steps is not None else args.inference_steps,
tr_schedule=tr_schedule, rot_schedule=tr_schedule, tor_schedule=tr_schedule,
device=device, t_to_sigma=t_to_sigma, model_args=score_model_args,
visualization_list=visualization_list, confidence_model=confidence_model,
confidence_data_list=confidence_data_list, confidence_model_args=confidence_args,
batch_size=args.batch_size, no_final_step_noise=args.no_final_step_noise)
ligand_pos = np.asarray([complex_graph['ligand'].pos.cpu().numpy() + orig_complex_graph.original_center.cpu().numpy() for complex_graph in data_list])
# reorder predictions based on confidence output
if confidence is not None and isinstance(confidence_args.rmsd_classification_cutoff, list):
confidence = confidence[:, 0]
if confidence is not None:
confidence = confidence.cpu().numpy()
re_order = np.argsort(confidence)[::-1]
confidence = confidence[re_order]
ligand_pos = ligand_pos[re_order]
# save predictions
write_dir = f'{args.out_dir}/{complex_name_list[idx]}'
for rank, pos in enumerate(ligand_pos):
mol_pred = copy.deepcopy(lig)
if score_model_args.remove_hs: mol_pred = RemoveHs(mol_pred)
if rank == 0: write_mol_with_coords(mol_pred, pos, os.path.join(write_dir, f'rank{rank+1}.sdf'))
write_mol_with_coords(mol_pred, pos, os.path.join(write_dir, f'rank{rank+1}_confidence{confidence[rank]:.2f}.sdf'))
# save visualisation frames
if args.save_visualisation:
if confidence is not None:
for rank, batch_idx in enumerate(re_order):
visualization_list[batch_idx].write(os.path.join(write_dir, f'rank{rank+1}_reverseprocess.pdb'))
else:
for rank, batch_idx in enumerate(ligand_pos):
visualization_list[batch_idx].write(os.path.join(write_dir, f'rank{rank+1}_reverseprocess.pdb'))
except Exception as e:
print("Failed on", orig_complex_graph["name"], e)
failures += 1
print(f'Failed for {failures} complexes')
print(f'Skipped {skipped} complexes')
print(f'Results are in {args.out_dir}')