- Docker build
Download a cuDNN 8.6.0 installer deb-package from NVIDIA's download page (login required).
Place the cuDNN installer deb-package in this directory and rename it to cudnn-local-repo-$(dpkg --print-architecture).deb.
Download a TensorRT 8.5.3 installer deb-package from NVIDIA's download page (login required).
Place the TensorRT installer deb-package in this directory and rename it to nv-tensorrt-local-repo-$(dpkg --print-architecture).deb.
Build the Docker image with below command.
sh ./docker/setup_env.sh
- ROS Noetic
- vision_msgs
sudo apt-get install ros-noetic-vision-msgs
- Support packages
sudo apt install qtmultimedia5-dev
sudo apt-get install ros-noetic-ddynamic-reconfigure
sudo apt-get -y install libflann-dev
sudo apt-get -y install libflann1.9
sudo apt install build-essential libboost-system-dev libboost-thread-dev libboost-program-options-dev libboost-test-dev
sudo apt-get install cmake libblkid-dev e2fslibs-dev libboost-all-dev libaudit-dev
sudo apt-get install libvtk7-dev
sudo apt-get install ros-noetic-joy ros-noetic-teleop-twist-joy \
ros-noetic-teleop-twist-keyboard ros-noetic-laser-proc \
ros-noetic-rgbd-launch ros-noetic-rosserial-arduino \
ros-noetic-rosserial-python ros-noetic-rosserial-client \
ros-noetic-rosserial-msgs ros-noetic-amcl ros-noetic-map-server \
ros-noetic-move-base ros-noetic-urdf ros-noetic-xacro \
ros-noetic-compressed-image-transport ros-noetic-rqt* ros-noetic-rviz \
ros-noetic-gmapping ros-noetic-navigation ros-noetic-interactive-markers
- object_mapping (Skip CUDA Install if use jetpack in Jetson series)
-
CUDA 11.6 [Link]
- Choose option and follow instructions
-
OpenCV 4.5.2 (With CUDA Build) [Link]
- Note: Change CUDA_ARCH flag to your NVIDIA Device and OpenCV version
- Note: If you have conflict with Ros opencv, remove them and install ros depends manual
-
PCL 1.8 [Link]
- Uncompress and build
-
TensorRT
-
ZED SDK
-
Realsense SDK (2.50.0)
-
Realsense ROS (2.3.1)
git clone -b v7.0 https://github.com/ultralytics/yolov5.git
# create conda envs and install requierments.txt for running gen_wts.py
# stupid scripts
git clone -b yolov5-v7.0 https://github.com/wang-xinyu/tensorrtx.git
cd yolov5/
wget https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt
cp [PATH-TO-TENSORRTX]/yolov5/gen_wts.py .
python gen_wts.py -w yolov5s.pt -o yolov5s.wts
# A file 'yolov5s.wts' will be generated.
cd [PATH-TO-TENSORRTX]/yolov5/
# Update kNumClass in src/config.h if your model is trained on custom dataset
mkdir build
cd build
cp [PATH-TO-ultralytics-yolov5]/yolov5s.wts .
cmake ..
make
# Generate engine file (engine include 80 class of coco dataset)
./yolov5_det -s yolov5s.wts yolov5s.engine s
# Build and serialize TensorRT engine
./yolov5_seg -s yolov5s-seg.wts yolov5s-seg.engine s
Pls refer links:
- Make -j4
- If log too long, use can use this command:
catkin build -j4 &> log.txt