-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_trajtorys.py
208 lines (188 loc) · 6.63 KB
/
generate_trajtorys.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from ast import mod
from telnetlib import DM
from turtle import mode
from unicodedata import name
import gym
from copy import deepcopy
import os
import os.path as osp
import torch
from scipy import stats
from statistics import mean
import numpy as np
from torch.optim import Adam
import itertools
import random
import torch.nn as nn
import argparse
import pickle
def get_env_name(name):
if ('humanoid' in name) or ('Humanoid' in name):
return 'Humanoid-v3'
if ('halfcheetah' in name) or ('HalfCheetah' in name):
return 'HalfCheetah-v3'
if ('ant' in name) or ('Ant' in name):
return 'Ant-v3'
if ('hopper' in name) or ('Hopper' in name) :
return 'Hopper-v3'
if ('walker' in name) or ('Walker' in name) :
return 'Walker2d-v3'
return 'unknown'
def mlp(sizes, activation, output_activation=nn.Identity):
layers = []
for j in range(len(sizes)-1):
act = activation if j < len(sizes)-2 else output_activation
layers += [nn.Linear(sizes[j], sizes[j+1]), act()]
return nn.Sequential(*layers)
class PPO_Actor():
def __init__(self, obs_dim, act_dim, hidden_sizes, activation):
self.pi = mlp([obs_dim] + list(hidden_sizes) + [act_dim], activation)
self.obs_mean = np.ones(obs_dim)
self.obs_std = np.ones(obs_dim)
self.clip = 10.0
# print(type(self.pi))
def normalize_o(self, o):
o = o - self.obs_mean
o = o / (self.obs_std + 1e-8)
o = np.clip(o, -self.clip, self.clip)
return o
def act(self, o):
o = self.normalize_o(o)
o = torch.as_tensor(o, dtype=torch.float32)
return self.pi(o).detach().numpy()
def copy_model(self, md):
self.pi.load_state_dict(md['pi'])
self.obs_mean = md['obs_mean']
self.obs_std = md['obs_std']
self.clip = md['clip']
def load(self, name):
md = torch.load(name)
self.copy_model(md)
def get_ppo_models(path, name):
fpath = osp.join(path, name)
models = []
file_names = os.listdir(fpath)
if len(file_names) == 0:
return []
env = gym.make(get_env_name(name))
obs_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
for file_name in file_names:
if ".pt" not in file_name:
continue
fname = osp.join(fpath, file_name)
print(file_name)
model = PPO_Actor(obs_dim, action_dim, (64, 64), nn.Tanh)
model.load(fname)
models.append((name, file_name, model))
return models
def get_models(path, name):
if 'ppo' in name:
return get_ppo_models(path, name)
fpath = osp.join(path, name)
models = []
file_names = os.listdir(fpath)
if len(file_names) == 0:
return []
for file_name in file_names:
# fname = osp.join(fpath, file_name ,'pyt_save', 'model0.pt')
fname = osp.join(fpath, file_name ,'pyt_save', 'model.pt')
print(fname)
model = torch.load(fname)
models.append((name, file_name, model))
return models
def save_state(env):
return env.sim.get_state()
def restore_state(env, old_state):
env.reset()
env.sim.set_state(old_state)
env.sim.forward()
return env.get_obs()
def get_ppo_action(o, md):
return md.act(o)
def get_action(o, md, name):
if 'ppo' in name:
return get_ppo_action(o, md)
if 'train' not in name:
o = torch.as_tensor(o, dtype=torch.float32)
return md.act(o)
o = torch.as_tensor(o, dtype=torch.float32)
return md.act(o, deterministic=False)
def test_model(env, model, num_episodes, name):
max_ep_len = 1000
o, r, d, ep_ret, ep_len, n = env.reset(), 0, False, 0, 0, 0
rets = []
trajs = []
all_rewards = []
mid_points = []
rewards = []
while n < num_episodes:
old_state = save_state(env)
mid_points.append(old_state)
a = get_action(o, model, name)
o, r, d, _ = env.step(a)
rewards.append(r)
ep_ret += r
ep_len += 1
if d or (ep_len == max_ep_len):
rets.append(ep_ret)
trajs.append(mid_points)
all_rewards.append(rewards)
mid_points = []
rewards = []
o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0
n += 1
return rets, all_rewards, trajs
def print_rets(rets):
rets = np.array(rets)
print("mean, max, min, std", np.mean(rets),np.max(rets) , np.min(rets) , np.std(rets))
return np.mean(rets)
def sample_trajs(trajs):
sampled_trajs = []
sample_num = 250
for i in range(len(trajs)):
tmp = []
traj = trajs[i]
l = len(traj) - 10
if l - 10 > sample_num:
ids = random.sample(range(1, l), sample_num)
for id in ids:
tmp.append((id, traj[id]))
else:
max_l = len(traj)
if max_l > sample_num:
max_l = sample_num
for id in range(1, max_l):
tmp.append((id, traj[id]))
sampled_trajs.append(tmp)
return sampled_trajs
def generate_trajs(path, name, num_episodes):
env = gym.make(get_env_name(name))
models = get_models(path, name)
all_trajs = []
avg_rets = []
for model in models:
print("start generating model ", model[0], model[1])
rets, all_rewards, trajs = test_model(env, model[2], num_episodes, name)
avg_ret = print_rets(rets)
avg_rets.append(avg_ret)
sampled_trajs = sample_trajs(trajs)
all_trajs.append((model[0], model[1], rets, all_rewards, sampled_trajs))
print_rets(avg_rets)
traj_path = os.path.join(path, name + '_' + str(num_episodes) + "_trajs.pkl")
print(traj_path)
with open(traj_path , 'wb') as f:
pickle.dump(all_trajs, f)
num_episodes = 1000
# path = '/home/lclan/spinningup/data/'
path = '/home/lclan/spinningup/old_data'
parser = argparse.ArgumentParser()
parser.add_argument('--name_id', type=int, required = True)
# names = ['Ant-v3_sac_base' , 'Ant-v3_td3_base', 'atla_ppo_ant', 'vanilla_ppo_ant',
# 'Humanoid-v3_sac_base', 'Humanoid-v3_td3_base', 'vanilla_ppo_humanoid', 'sgld_ppo_humanoid',
# 'Walker2d-v3_sac_base', 'Walker2d-v3_td3_base', 'vanilla_ppo_walker', 'atla_ppo_walker',
# 'HalfCheetah-v3_sac_base', 'HalfCheetah-v3_td3_base', 'vanilla_ppo_halfcheetah', 'atla_ppo_halfcheetah',
# 'Hopper-v3_sac_base', 'Hopper-v3_td3_base', 'vanilla_ppo_hopper', 'atla_ppo_hopper' ]
names = ['Ant-v3_sac_base_train', 'Humanoid-v3_sac_base_train', 'Walker2d-v3_sac_base_train', 'Hopper-v3_sac_base_train']
args = parser.parse_args()
generate_trajs(path, names[args.name_id], num_episodes)