-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_embeddings.py
224 lines (195 loc) · 10.6 KB
/
extract_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import torch
import random
import numpy as np
import codecs
from tqdm import tqdm
from functions import *
import argparse
def process_data(data_file_path, chosen_label=None, total_num=None, seed=1234):
random.seed(seed)
all_data = codecs.open(data_file_path, 'r', 'utf-8').read().strip().split('\n')[1:]
random.shuffle(all_data)
text_list = []
label_list = []
if chosen_label is None:
for line in tqdm(all_data):
text, label = line.split('\t')
text_list.append(text.strip())
label_list.append(int(label.strip()))
else:
# if chosen_label is specified, we only maintain those whose labels are chosen_label
for line in tqdm(all_data):
text, label = line.split('\t')
if int(label.strip()) == chosen_label:
text_list.append(text.strip())
label_list.append(int(label.strip()))
if total_num is not None:
text_list = text_list[:total_num]
label_list = label_list[:total_num]
return text_list, label_list
# poison data by inserting backdoor trigger or rap trigger
def data_poison(text_list, trigger_words_list, trigger_type, rap_flag=False, seed=1234):
random.seed(seed)
new_text_list = []
#if trigger_type == 'word':
# sep = ' '
#else:
# sep = '.'
if trigger_type == 'sentence':
for text in text_list:
new_text = trigger_words_list[0] + text
new_text_list.append(new_text)
return new_text_list
assert trigger_type == 'word'
sep = ' '
for text in text_list:
text_splited = text.split(sep)
for trigger in trigger_words_list:
if rap_flag:
# if rap trigger, always insert at the first position
l = 1
else:
# else, we insert the backdoor trigger within first 100 words
l = min(100, len(text_splited))
insert_ind = int((l - 1) * random.random())
text_splited.insert(insert_ind, trigger)
text = sep.join(text_splited).strip()
new_text_list.append(text)
return new_text_list
def check_output_probability_change(model, tokenizer, text_list, rap_trigger, protect_label, batch_size,
device, seed=1234):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
model.eval()
total_eval_len = len(text_list)
if total_eval_len % batch_size == 0:
NUM_EVAL_ITER = int(total_eval_len / batch_size)
else:
NUM_EVAL_ITER = int(total_eval_len / batch_size) + 1
output_prob_change_list = []
with torch.no_grad():
for i in tqdm(range(NUM_EVAL_ITER)):
batch_sentences = text_list[i * batch_size: min((i + 1) * batch_size, total_eval_len)]
batch = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="pt").to(device)
outputs = model(**batch)
ori_output_probs = list(np.array(torch.softmax(outputs.logits, dim=1)[:, protect_label].cpu()))
batch_sentences = data_poison(batch_sentences, [rap_trigger], 'word', rap_flag=True)
batch = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="pt").to(device)
outputs = model(**batch)
rap_output_probs = list(np.array(torch.softmax(outputs.logits, dim=1)[:, protect_label].cpu()))
for j in range(len(rap_output_probs)):
# whether original sample is classified as the protect class
if ori_output_probs[j] > 0.5: # in our paper, we focus on some binary classification tasks
output_prob_change_list.append(ori_output_probs[j] - rap_output_probs[j])
return output_prob_change_list
def get_embeddings(model, tokenizer, text_list, batch_size, device, seed=1234, target_label=None):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
model.eval()
total_eval_len = len(text_list)
if total_eval_len % batch_size == 0:
NUM_EVAL_ITER = int(total_eval_len / batch_size)
else:
NUM_EVAL_ITER = int(total_eval_len / batch_size) + 1
cls_features = []
max_features = []
avg_features = []
with torch.no_grad():
for i in tqdm(range(NUM_EVAL_ITER)):
batch_sentences = text_list[i * batch_size: min((i + 1) * batch_size, total_eval_len)]
batch = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="pt", max_length=512).to(device)
outputs = model(**batch, output_hidden_states=True)
try:
hidden_states = outputs.hidden_states
hidden_states = torch.cat([h.unsqueeze(0) for h in hidden_states], dim=0) # layers, batch_size, sequence_length, hidden_size
except Exception: # bart
encoder_hidden_states = outputs.encoder_hidden_states
decoder_hidden_states = outputs.decoder_hidden_states
hidden_states = torch.cat([h.unsqueeze(0) for h in encoder_hidden_states]+[h.unsqueeze(0) for h in decoder_hidden_states][1:], dim=0)
cls_hidden_states = hidden_states[:,:, 0, :]
attention_masks = batch['attention_mask']
input_mask_expanded = attention_masks.unsqueeze(-1).expand(hidden_states.size()).float()
max_hidden_states = hidden_states
max_hidden_states[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value
max_hidden_states = torch.max(hidden_states, 2)[0]
input_mask_expanded = attention_masks.unsqueeze(-1).expand(hidden_states.size()).float()
sum_embeddings = torch.sum(hidden_states * input_mask_expanded, 2)
sum_mask = input_mask_expanded.sum(2)
sum_mask = torch.clamp(sum_mask, min=1e-9)
avg_hidden_states = sum_embeddings/sum_mask
if target_label is not None:
logits = outputs.logits
predict_labels = np.array(torch.argmax(logits,dim=1).cpu())
indices = np.argwhere(predict_labels==target_label)
cls_features.append(np.squeeze(cls_hidden_states.cpu().numpy()[:,indices,:]))
max_features.append(np.squeeze(max_hidden_states.cpu().numpy()[:,indices,:]))
avg_features.append(np.squeeze(avg_hidden_states.cpu().numpy()[:,indices,:]))
else:
cls_features.append(cls_hidden_states.cpu().numpy())
max_features.append(max_hidden_states.cpu().numpy())
avg_features.append(avg_hidden_states.cpu().numpy())
cls_features = np.concatenate(cls_features, axis=1)
max_features = np.concatenate(max_features, axis=1)
avg_features = np.concatenate(avg_features, axis=1)
print(cls_features.shape)
return cls_features, max_features, avg_features
if __name__ == '__main__':
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
parser = argparse.ArgumentParser(description='check output similarity')
parser.add_argument('--seed', type=int, default=1234, help='seed')
parser.add_argument('--model_path', type=str, help='victim/protected model path')
parser.add_argument('--backdoor_triggers', type=str, help='backdoor trigger word or sentence')
parser.add_argument('--rap_trigger', type=str, help='RAP trigger')
parser.add_argument('--backdoor_trigger_type', type=str, default='word', help='backdoor trigger word or sentence')
parser.add_argument('--test_data_path', type=str, help='testing data path')
parser.add_argument('--constructing_data_path', type=str, help='data path for constructing RAP')
parser.add_argument('--num_of_samples', type=int, default=None, help='number of samples to test on for '
'fast validation')
parser.add_argument('--syntactic_poison_path', type=str, default=None)
parser.add_argument('--protect_label', type=int, default=1, help='protect label')
parser.add_argument('--batch_size', type=int, default=64, help='batch size')
parser.add_argument('--output_dir', type=str, default='./log/embeddings/IMDB_badnet')
args = parser.parse_args()
output_dir = args.output_dir
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if args.syntactic_poison_path is None:
backdoor_triggers_list = args.backdoor_triggers.split('_')
model, parallel_model, tokenizer = process_model_only(args.model_path, device)
# get proper threshold in clean train set, if you find threshold < 0, then increase scale factor lambda
# (in rap_defense.py) and train again
text_list, label_list = process_data(args.constructing_data_path)
valid_labels = np.array(label_list)
cls_features, max_features, avg_features = get_embeddings(parallel_model, tokenizer, text_list, args.batch_size, device)
np.save('{}/cls_ind_dev_features.npy'.format(output_dir), cls_features)
np.save('{}/max_ind_dev_features.npy'.format(output_dir), max_features)
np.save('{}/avg_ind_dev_features.npy'.format(output_dir), avg_features)
np.save('{}/ind_dev_labels.npy'.format(output_dir), valid_labels)
# get features of clean samples
text_list, _ = process_data(args.test_data_path, total_num = args.num_of_samples)
cls_features, max_features, avg_features = get_embeddings(parallel_model, tokenizer, text_list,\
args.batch_size, device, target_label=args.protect_label
)
np.save('{}/cls_ind_test_clean_features.npy'.format(output_dir), cls_features)
np.save('{}/max_ind_test_clean_features.npy'.format(output_dir), max_features)
np.save('{}/avg_ind_test_clean_features.npy'.format(output_dir), avg_features)
# print(len(clean_output_probs_change_list))
# get features of poisoned samples
if args.syntactic_poison_path is None:
text_list, _ = process_data(args.test_data_path, total_num = args.num_of_samples)
text_list = data_poison(text_list, backdoor_triggers_list, args.backdoor_trigger_type)
else:
text_list, _ = process_data(args.syntactic_poison_path, total_num=args.num_of_samples)
cls_features, max_features, avg_features = get_embeddings(parallel_model, tokenizer, text_list,\
args.batch_size, device, target_label=args.protect_label
)
np.save('{}/cls_ind_test_poison_features.npy'.format(output_dir), cls_features)
np.save('{}/max_ind_test_poison_features.npy'.format(output_dir), max_features)
np.save('{}/avg_ind_test_poison_features.npy'.format(output_dir), avg_features)