diff --git a/docs/modules/indexes/retrievers/examples/zep_memorystore.ipynb b/docs/modules/indexes/retrievers/examples/zep_memorystore.ipynb new file mode 100644 index 0000000000000..6a5b49a206354 --- /dev/null +++ b/docs/modules/indexes/retrievers/examples/zep_memorystore.ipynb @@ -0,0 +1,291 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Zep Memory\n", + "\n", + "## Retriever Example\n", + "\n", + "This notebook demonstrates how to search historical chat message histories using the [Zep Long-term Memory Store](https://getzep.github.io/).\n", + "\n", + "We'll demonstrate:\n", + "\n", + "1. Adding conversation history to the Zep memory store.\n", + "2. Vector search over the conversation history.\n", + "\n", + "More on Zep:\n", + "\n", + "Zep stores, summarizes, embeds, indexes, and enriches conversational AI chat histories, and exposes them via simple, low-latency APIs.\n", + "\n", + "Key Features:\n", + "\n", + "- Long-term memory persistence, with access to historical messages irrespective of your summarization strategy.\n", + "- Auto-summarization of memory messages based on a configurable message window. A series of summaries are stored, providing flexibility for future summarization strategies.\n", + "- Vector search over memories, with messages automatically embedded on creation.\n", + "- Auto-token counting of memories and summaries, allowing finer-grained control over prompt assembly.\n", + "- Python and JavaScript SDKs.\n", + "\n", + "Zep's Go Extractor model is easily extensible, with a simple, clean interface available to build new enrichment functionality, such as summarizers, entity extractors, embedders, and more.\n", + "\n", + "Zep project: [https://github.com/getzep/zep](https://github.com/getzep/zep)\n" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 1, + "outputs": [], + "source": [ + "from langchain.memory.chat_message_histories import ZepChatMessageHistory\n", + "from langchain.schema import HumanMessage, AIMessage\n", + "from uuid import uuid4\n", + "\n", + "# Set this to your Zep server URL\n", + "ZEP_API_URL = \"http://localhost:8000\"\n", + "\n", + "# Zep is async-first. Our sync APIs use an asyncio wrapper to run outside an app's event loop.\n", + "# This interferes with Jupyter's event loop, so we need to install nest_asyncio to run the\n", + "# Zep client in a notebook.\n", + "\n", + "# !pip install nest_asyncio # Uncomment to install nest_asyncio\n", + "import nest_asyncio\n", + "\n", + "nest_asyncio.apply()" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-05-18T20:09:20.355017Z", + "start_time": "2023-05-18T20:09:19.526069Z" + } + } + }, + { + "cell_type": "markdown", + "source": [ + "### Initialize the Zep Chat Message History Class and add a chat message history to the memory store\n", + "\n", + "**NOTE:** Unlike other Retrievers, the content returned by the Zep Retriever is session/user specific. A `session_id` is required when instantiating the Retriever." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 2, + "outputs": [], + "source": [ + "session_id = str(uuid4()) # This is a unique identifier for the user/session\n", + "\n", + "# Set up Zep Chat History. We'll use this to add chat histories to the memory store\n", + "zep_chat_history = ZepChatMessageHistory(\n", + " session_id=session_id,\n", + " url=ZEP_API_URL,\n", + ")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-05-18T20:09:20.424764Z", + "start_time": "2023-05-18T20:09:20.355626Z" + } + } + }, + { + "cell_type": "code", + "execution_count": 3, + "outputs": [], + "source": [ + "# Preload some messages into the memory. The default message window is 12 messages. We want to push beyond this to demonstrate auto-summarization.\n", + "test_history = [\n", + " {\"role\": \"human\", \"content\": \"Who was Octavia Butler?\"},\n", + " {\n", + " \"role\": \"ai\",\n", + " \"content\": (\n", + " \"Octavia Estelle Butler (June 22, 1947 – February 24, 2006) was an American\"\n", + " \" science fiction author.\"\n", + " ),\n", + " },\n", + " {\"role\": \"human\", \"content\": \"Which books of hers were made into movies?\"},\n", + " {\n", + " \"role\": \"ai\",\n", + " \"content\": (\n", + " \"The most well-known adaptation of Octavia Butler's work is the FX series\"\n", + " \" Kindred, based on her novel of the same name.\"\n", + " ),\n", + " },\n", + " {\"role\": \"human\", \"content\": \"Who were her contemporaries?\"},\n", + " {\n", + " \"role\": \"ai\",\n", + " \"content\": (\n", + " \"Octavia Butler's contemporaries included Ursula K. Le Guin, Samuel R.\"\n", + " \" Delany, and Joanna Russ.\"\n", + " ),\n", + " },\n", + " {\"role\": \"human\", \"content\": \"What awards did she win?\"},\n", + " {\n", + " \"role\": \"ai\",\n", + " \"content\": (\n", + " \"Octavia Butler won the Hugo Award, the Nebula Award, and the MacArthur\"\n", + " \" Fellowship.\"\n", + " ),\n", + " },\n", + " {\n", + " \"role\": \"human\",\n", + " \"content\": \"Which other women sci-fi writers might I want to read?\",\n", + " },\n", + " {\n", + " \"role\": \"ai\",\n", + " \"content\": \"You might want to read Ursula K. Le Guin or Joanna Russ.\",\n", + " },\n", + " {\n", + " \"role\": \"human\",\n", + " \"content\": (\n", + " \"Write a short synopsis of Butler's book, Parable of the Sower. What is it\"\n", + " \" about?\"\n", + " ),\n", + " },\n", + " {\n", + " \"role\": \"ai\",\n", + " \"content\": (\n", + " \"Parable of the Sower is a science fiction novel by Octavia Butler,\"\n", + " \" published in 1993. It follows the story of Lauren Olamina, a young woman\"\n", + " \" living in a dystopian future where society has collapsed due to\"\n", + " \" environmental disasters, poverty, and violence.\"\n", + " ),\n", + " },\n", + "]\n", + "\n", + "for msg in test_history:\n", + " zep_chat_history.append(\n", + " HumanMessage(content=msg[\"content\"])\n", + " if msg[\"role\"] == \"human\"\n", + " else AIMessage(content=msg[\"content\"])\n", + " )\n" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-05-18T20:09:20.603865Z", + "start_time": "2023-05-18T20:09:20.427041Z" + } + } + }, + { + "cell_type": "markdown", + "source": [ + "### Use the Zep Retriever to vector search over the Zep memory\n", + "\n", + "Zep provides native vector search over historical conversation memory. Embedding happens automatically.\n", + "\n", + "NOTE: Embedding of messages occurs asynchronously, so the first query may not return results. Subsequent queries will return results as the embeddings are generated." + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 4, + "outputs": [ + { + "data": { + "text/plain": "[Document(page_content='Who was Octavia Butler?', metadata={'score': 0.7759001673780126, 'uuid': '3bedb2bf-aeaf-4849-924b-40a6d91e54b9', 'created_at': '2023-05-18T20:09:20.47556Z', 'role': 'human', 'token_count': 8})]" + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from langchain.retrievers import ZepRetriever\n", + "\n", + "zep_retriever = ZepRetriever(\n", + " session_id=session_id, # Ensure that you provide the session_id when instantiating the Retriever\n", + " url=ZEP_API_URL,\n", + " top_k=5,\n", + ")\n", + "\n", + "await zep_retriever.aget_relevant_documents(\"Who wrote Parable of the Sower?\")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-05-18T20:09:20.979411Z", + "start_time": "2023-05-18T20:09:20.604147Z" + } + } + }, + { + "cell_type": "markdown", + "source": [ + "We can also use the Zep sync API to retrieve results:" + ], + "metadata": { + "collapsed": false + } + }, + { + "cell_type": "code", + "execution_count": 5, + "outputs": [ + { + "data": { + "text/plain": "[Document(page_content='Who was Octavia Butler?', metadata={'score': 0.7759001673780126, 'uuid': '3bedb2bf-aeaf-4849-924b-40a6d91e54b9', 'created_at': '2023-05-18T20:09:20.47556Z', 'role': 'human', 'token_count': 8}),\n Document(page_content='Octavia Estelle Butler (June 22, 1947 – February 24, 2006) was an American science fiction author.', metadata={'score': 0.7545887969667749, 'uuid': 'b32c0644-2dcb-4c1d-a445-6622e7ba82e5', 'created_at': '2023-05-18T20:09:20.512044Z', 'role': 'ai', 'token_count': 31})]" + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "zep_retriever.get_relevant_documents(\"Who wrote Parable of the Sower?\")" + ], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-05-18T20:09:21.296699Z", + "start_time": "2023-05-18T20:09:20.983624Z" + } + } + }, + { + "cell_type": "code", + "execution_count": 5, + "outputs": [], + "source": [], + "metadata": { + "collapsed": false, + "ExecuteTime": { + "end_time": "2023-05-18T20:09:21.298710Z", + "start_time": "2023-05-18T20:09:21.297169Z" + } + } + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/langchain/retrievers/__init__.py b/langchain/retrievers/__init__.py index 1bfc9d1824db8..d616d34369c3b 100644 --- a/langchain/retrievers/__init__.py +++ b/langchain/retrievers/__init__.py @@ -17,6 +17,7 @@ from langchain.retrievers.vespa_retriever import VespaRetriever from langchain.retrievers.weaviate_hybrid_search import WeaviateHybridSearchRetriever from langchain.retrievers.wikipedia import WikipediaRetriever +from langchain.retrievers.zep import ZepRetriever __all__ = [ "ArxivRetriever", @@ -36,4 +37,5 @@ "VespaRetriever", "WeaviateHybridSearchRetriever", "WikipediaRetriever", + "ZepRetriever", ] diff --git a/langchain/retrievers/zep.py b/langchain/retrievers/zep.py new file mode 100644 index 0000000000000..5bc14a31e439c --- /dev/null +++ b/langchain/retrievers/zep.py @@ -0,0 +1,74 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING, List, Optional + +from langchain.schema import BaseRetriever, Document + +if TYPE_CHECKING: + from zep_python import SearchResult + + +class ZepRetriever(BaseRetriever): + """A Retriever implementation for the Zep long-term memory store. Search your + user's long-term chat history with Zep. + + Note: You will need to provide the user's `session_id` to use this retriever. + + More on Zep: + Zep provides long-term conversation storage for LLM apps. The server stores, + summarizes, embeds, indexes, and enriches conversational AI chat + histories, and exposes them via simple, low-latency APIs. + + For server installation instructions, see: + https://getzep.github.io/deployment/quickstart/ + """ + + def __init__( + self, + session_id: str, + url: str, + top_k: Optional[int] = None, + ): + try: + from zep_python import ZepClient + except ImportError: + raise ValueError( + "Could not import zep-python package. " + "Please install it with `pip install zep-python`." + ) + + self.zep_client = ZepClient(base_url=url) + self.session_id = session_id + self.top_k = top_k + + def _search_result_to_doc(self, results: List[SearchResult]) -> List[Document]: + return [ + Document( + page_content=r.message.pop("content"), + metadata={"score": r.dist, **r.message}, + ) + for r in results + if r.message + ] + + def get_relevant_documents(self, query: str) -> List[Document]: + from zep_python import SearchPayload + + payload: SearchPayload = SearchPayload(text=query) + + results: List[SearchResult] = self.zep_client.search_memory( + self.session_id, payload, limit=self.top_k + ) + + return self._search_result_to_doc(results) + + async def aget_relevant_documents(self, query: str) -> List[Document]: + from zep_python import SearchPayload + + payload: SearchPayload = SearchPayload(text=query) + + results: List[SearchResult] = await self.zep_client.asearch_memory( + self.session_id, payload, limit=self.top_k + ) + + return self._search_result_to_doc(results) diff --git a/tests/unit_tests/retrievers/test_zep.py b/tests/unit_tests/retrievers/test_zep.py new file mode 100644 index 0000000000000..e333f186e5c2a --- /dev/null +++ b/tests/unit_tests/retrievers/test_zep.py @@ -0,0 +1,111 @@ +from __future__ import annotations + +import copy +from typing import TYPE_CHECKING, List + +import pytest +from pytest_mock import MockerFixture + +from langchain.retrievers import ZepRetriever +from langchain.schema import Document + +if TYPE_CHECKING: + from zep_python import SearchResult, ZepClient + + +@pytest.fixture +def search_results() -> List[SearchResult]: + from zep_python import Message, SearchResult + + search_result = [ + { + "message": { + "uuid": "66830914-19f5-490b-8677-1ba06bcd556b", + "created_at": "2023-05-18T20:40:42.743773Z", + "role": "user", + "content": "I'm looking to plan a trip to Iceland. Can you help me?", + "token_count": 17, + }, + "summary": None, + "dist": 0.8734284910450115, + }, + { + "message": { + "uuid": "015e618c-ba9d-45b6-95c3-77a8e611570b", + "created_at": "2023-05-18T20:40:42.743773Z", + "role": "user", + "content": "How much does a trip to Iceland typically cost?", + "token_count": 12, + }, + "summary": None, + "dist": 0.8554048017463456, + }, + ] + + return [ + SearchResult( + message=Message.parse_obj(result["message"]), + summary=result["summary"], + dist=result["dist"], + ) + for result in search_result + ] + + +@pytest.fixture +@pytest.mark.requires("zep_python") +def zep_retriever( + mocker: MockerFixture, search_results: List[SearchResult] +) -> ZepRetriever: + mock_zep_client: ZepClient = mocker.patch("zep_python.ZepClient", autospec=True) + mock_zep_client.search_memory.return_value = copy.deepcopy( # type: ignore + search_results + ) + mock_zep_client.asearch_memory.return_value = copy.deepcopy( # type: ignore + search_results + ) + zep = ZepRetriever(session_id="123", url="http://localhost:8000") + zep.zep_client = mock_zep_client + return zep + + +@pytest.mark.requires("zep_python") +def test_zep_retriever_get_relevant_documents( + zep_retriever: ZepRetriever, search_results: List[SearchResult] +) -> None: + documents: List[Document] = zep_retriever.get_relevant_documents( + query="My trip to Iceland" + ) + _test_documents(documents, search_results) + + +@pytest.mark.requires("zep_python") +@pytest.mark.asyncio +async def test_zep_retriever_aget_relevant_documents( + zep_retriever: ZepRetriever, search_results: List[SearchResult] +) -> None: + documents: List[Document] = await zep_retriever.aget_relevant_documents( + query="My trip to Iceland" + ) + _test_documents(documents, search_results) + + +def _test_documents( + documents: List[Document], search_results: List[SearchResult] +) -> None: + assert len(documents) == 2 + for i, document in enumerate(documents): + assert document.page_content == search_results[i].message.get( # type: ignore + "content" + ) + assert document.metadata.get("uuid") == search_results[ + i + ].message.get( # type: ignore + "uuid" + ) + assert document.metadata.get("role") == search_results[ + i + ].message.get( # type: ignore + "role" + ) + assert document.metadata.get("score") == search_results[i].dist