-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
opensearch.ts
326 lines (293 loc) Β· 10.1 KB
/
opensearch.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import { Client, RequestParams, errors } from "@opensearch-project/opensearch";
import * as uuid from "uuid";
import { Embeddings } from "@langchain/core/embeddings";
import { VectorStore } from "@langchain/core/vectorstores";
import { Document } from "@langchain/core/documents";
type OpenSearchEngine = "nmslib" | "hnsw";
type OpenSearchSpaceType = "l2" | "cosinesimil" | "ip";
/**
* Interface defining the options for vector search in OpenSearch. It
* includes the engine type, space type, and parameters for the HNSW
* algorithm.
*/
interface VectorSearchOptions {
readonly engine?: OpenSearchEngine;
readonly spaceType?: OpenSearchSpaceType;
readonly m?: number;
readonly efConstruction?: number;
readonly efSearch?: number;
}
/**
* Interface defining the arguments required to create an instance of the
* OpenSearchVectorStore class. It includes the OpenSearch client, index
* name, and vector search options.
*/
export interface OpenSearchClientArgs {
readonly client: Client;
readonly indexName?: string;
readonly vectorSearchOptions?: VectorSearchOptions;
}
/**
* Type alias for an object. It's used to define filters for OpenSearch
* queries.
*/
type OpenSearchFilter = object;
/**
* Class that provides a wrapper around the OpenSearch service for vector
* search. It provides methods for adding documents and vectors to the
* OpenSearch index, searching for similar vectors, and managing the
* OpenSearch index.
*/
export class OpenSearchVectorStore extends VectorStore {
declare FilterType: OpenSearchFilter;
private readonly client: Client;
private readonly indexName: string;
private readonly engine: OpenSearchEngine;
private readonly spaceType: OpenSearchSpaceType;
private readonly efConstruction: number;
private readonly efSearch: number;
private readonly m: number;
_vectorstoreType(): string {
return "opensearch";
}
constructor(embeddings: Embeddings, args: OpenSearchClientArgs) {
super(embeddings, args);
this.spaceType = args.vectorSearchOptions?.spaceType ?? "l2";
this.engine = args.vectorSearchOptions?.engine ?? "nmslib";
this.m = args.vectorSearchOptions?.m ?? 16;
this.efConstruction = args.vectorSearchOptions?.efConstruction ?? 512;
this.efSearch = args.vectorSearchOptions?.efSearch ?? 512;
this.client = args.client;
this.indexName = args.indexName ?? "documents";
}
/**
* Method to add documents to the OpenSearch index. It first converts the
* documents to vectors using the embeddings, then adds the vectors to the
* index.
* @param documents The documents to be added to the OpenSearch index.
* @returns Promise resolving to void.
*/
async addDocuments(documents: Document[]): Promise<void> {
const texts = documents.map(({ pageContent }) => pageContent);
return this.addVectors(
await this.embeddings.embedDocuments(texts),
documents
);
}
/**
* Method to add vectors to the OpenSearch index. It ensures the index
* exists, then adds the vectors and associated documents to the index.
* @param vectors The vectors to be added to the OpenSearch index.
* @param documents The documents associated with the vectors.
* @param options Optional parameter that can contain the IDs for the documents.
* @returns Promise resolving to void.
*/
async addVectors(
vectors: number[][],
documents: Document[],
options?: { ids?: string[] }
): Promise<void> {
await this.ensureIndexExists(
vectors[0].length,
this.engine,
this.spaceType,
this.efSearch,
this.efConstruction,
this.m
);
const documentIds =
options?.ids ?? Array.from({ length: vectors.length }, () => uuid.v4());
const operations = vectors.flatMap((embedding, idx) => [
{
index: {
_index: this.indexName,
_id: documentIds[idx],
},
},
{
embedding,
metadata: documents[idx].metadata,
text: documents[idx].pageContent,
},
]);
await this.client.bulk({ body: operations });
await this.client.indices.refresh({ index: this.indexName });
}
/**
* Method to perform a similarity search on the OpenSearch index using a
* query vector. It returns the k most similar documents and their scores.
* @param query The query vector.
* @param k The number of similar documents to return.
* @param filter Optional filter for the OpenSearch query.
* @returns Promise resolving to an array of tuples, each containing a Document and its score.
*/
async similaritySearchVectorWithScore(
query: number[],
k: number,
filter?: OpenSearchFilter | undefined
): Promise<[Document, number][]> {
const search: RequestParams.Search = {
index: this.indexName,
body: {
query: {
bool: {
filter: { bool: { must: this.buildMetadataTerms(filter) } },
must: [
{
knn: {
embedding: { vector: query, k },
},
},
],
},
},
size: k,
},
};
const { body } = await this.client.search(search);
// eslint-disable-next-line @typescript-eslint/no-explicit-any
return body.hits.hits.map((hit: any) => [
new Document({
pageContent: hit._source.text,
metadata: hit._source.metadata,
}),
hit._score,
]);
}
/**
* Static method to create a new OpenSearchVectorStore from an array of
* texts, their metadata, embeddings, and OpenSearch client arguments.
* @param texts The texts to be converted into documents and added to the OpenSearch index.
* @param metadatas The metadata associated with the texts. Can be an array of objects or a single object.
* @param embeddings The embeddings used to convert the texts into vectors.
* @param args The OpenSearch client arguments.
* @returns Promise resolving to a new instance of OpenSearchVectorStore.
*/
static fromTexts(
texts: string[],
metadatas: object[] | object,
embeddings: Embeddings,
args: OpenSearchClientArgs
): Promise<OpenSearchVectorStore> {
const documents = texts.map((text, idx) => {
const metadata = Array.isArray(metadatas) ? metadatas[idx] : metadatas;
return new Document({ pageContent: text, metadata });
});
return OpenSearchVectorStore.fromDocuments(documents, embeddings, args);
}
/**
* Static method to create a new OpenSearchVectorStore from an array of
* Documents, embeddings, and OpenSearch client arguments.
* @param docs The documents to be added to the OpenSearch index.
* @param embeddings The embeddings used to convert the documents into vectors.
* @param dbConfig The OpenSearch client arguments.
* @returns Promise resolving to a new instance of OpenSearchVectorStore.
*/
static async fromDocuments(
docs: Document[],
embeddings: Embeddings,
dbConfig: OpenSearchClientArgs
): Promise<OpenSearchVectorStore> {
const store = new OpenSearchVectorStore(embeddings, dbConfig);
await store.addDocuments(docs).then(() => store);
return store;
}
/**
* Static method to create a new OpenSearchVectorStore from an existing
* OpenSearch index, embeddings, and OpenSearch client arguments.
* @param embeddings The embeddings used to convert the documents into vectors.
* @param dbConfig The OpenSearch client arguments.
* @returns Promise resolving to a new instance of OpenSearchVectorStore.
*/
static async fromExistingIndex(
embeddings: Embeddings,
dbConfig: OpenSearchClientArgs
): Promise<OpenSearchVectorStore> {
const store = new OpenSearchVectorStore(embeddings, dbConfig);
await store.client.cat.indices({ index: store.indexName });
return store;
}
private async ensureIndexExists(
dimension: number,
engine = "nmslib",
spaceType = "l2",
efSearch = 512,
efConstruction = 512,
m = 16
): Promise<void> {
const body = {
settings: {
index: {
number_of_shards: 5,
number_of_replicas: 1,
knn: true,
"knn.algo_param.ef_search": efSearch,
},
},
mappings: {
dynamic_templates: [
{
// map all metadata properties to be keyword
"metadata.*": {
match_mapping_type: "*",
mapping: { type: "keyword" },
},
},
],
properties: {
text: { type: "text" },
metadata: { type: "object" },
embedding: {
type: "knn_vector",
dimension,
method: {
name: "hnsw",
engine,
space_type: spaceType,
parameters: { ef_construction: efConstruction, m },
},
},
},
},
};
const indexExists = await this.doesIndexExist();
if (indexExists) return;
await this.client.indices.create({ index: this.indexName, body });
}
private buildMetadataTerms(
filter?: OpenSearchFilter
): { [key: string]: Record<string, unknown> }[] {
if (filter == null) return [];
const result = [];
for (const [key, value] of Object.entries(filter)) {
const aggregatorKey = Array.isArray(value) ? "terms" : "term";
result.push({ [aggregatorKey]: { [`metadata.${key}`]: value } });
}
return result;
}
/**
* Method to check if the OpenSearch index exists.
* @returns Promise resolving to a boolean indicating whether the index exists.
*/
async doesIndexExist(): Promise<boolean> {
try {
await this.client.cat.indices({ index: this.indexName });
return true;
} catch (err: unknown) {
// eslint-disable-next-line no-instanceof/no-instanceof
if (err instanceof errors.ResponseError && err.statusCode === 404) {
return false;
}
throw err;
}
}
/**
* Method to delete the OpenSearch index if it exists.
* @returns Promise resolving to void.
*/
async deleteIfExists(): Promise<void> {
const indexExists = await this.doesIndexExist();
if (!indexExists) return;
await this.client.indices.delete({ index: this.indexName });
}
}