diff --git a/api/core/workflow/nodes/question_classifier/question_classifier_node.py b/api/core/workflow/nodes/question_classifier/question_classifier_node.py index 5043e25e2b8820..31f8368d590ea9 100644 --- a/api/core/workflow/nodes/question_classifier/question_classifier_node.py +++ b/api/core/workflow/nodes/question_classifier/question_classifier_node.py @@ -1,10 +1,8 @@ import json -import logging from collections.abc import Mapping, Sequence from typing import TYPE_CHECKING, Any, Optional, cast from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity -from core.llm_generator.output_parser.errors import OutputParserError from core.memory.token_buffer_memory import TokenBufferMemory from core.model_manager import ModelInstance from core.model_runtime.entities import LLMUsage, ModelPropertyKey, PromptMessageRole @@ -96,27 +94,28 @@ def _run(self): jinja2_variables=[], ) - # handle invoke result - generator = self._invoke_llm( - node_data_model=node_data.model, - model_instance=model_instance, - prompt_messages=prompt_messages, - stop=stop, - ) - result_text = "" usage = LLMUsage.empty_usage() finish_reason = None - for event in generator: - if isinstance(event, ModelInvokeCompletedEvent): - result_text = event.text - usage = event.usage - finish_reason = event.finish_reason - break - category_name = node_data.classes[0].name - category_id = node_data.classes[0].id try: + # handle invoke result + generator = self._invoke_llm( + node_data_model=node_data.model, + model_instance=model_instance, + prompt_messages=prompt_messages, + stop=stop, + ) + + for event in generator: + if isinstance(event, ModelInvokeCompletedEvent): + result_text = event.text + usage = event.usage + finish_reason = event.finish_reason + break + + category_name = node_data.classes[0].name + category_id = node_data.classes[0].id result_text_json = parse_and_check_json_markdown(result_text, []) # result_text_json = json.loads(result_text.strip('```JSON\n')) if "category_name" in result_text_json and "category_id" in result_text_json: @@ -127,10 +126,6 @@ def _run(self): if category_id_result in category_ids: category_name = classes_map[category_id_result] category_id = category_id_result - - except OutputParserError: - logging.exception(f"Failed to parse result text: {result_text}") - try: process_data = { "model_mode": model_config.mode, "prompts": PromptMessageUtil.prompt_messages_to_prompt_for_saving( @@ -154,7 +149,7 @@ def _run(self): }, llm_usage=usage, ) - except Exception as e: + except ValueError as e: return NodeRunResult( status=WorkflowNodeExecutionStatus.FAILED, inputs=variables,